Metode Autoregressive Integrated Moving Average (Arima) dalam Memprediksi Produksi Tembakau Sumatera Utara

Authors

  • Meysin Andira Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.62383/algoritma.v3i2.435

Keywords:

Autoregressive Integrated Moving Average (Arima), Global economy, Tobacco production

Abstract

Tobacco is one of the economic crops that has an important role in the global and national economy. In the production and selling price of tobacco is not only influenced by internal factors, such as cultivation methods and agricultural techniques and also external factors, In an effort to overcome this challenge One promising approach is the use of statistical methods and machine learning to combine data on these diverse factors. Autoregressive Integrated Moving Average (Arima) method. In 2010-2021, North Sumatra Province had 12 regencies that had the potential for tobacco production consisting of 12 years with 5 regencies in North Sumatra that had the potential to produce tobacco. Based on the forecast results, there was a significant increase in the amount of higher tobacco production in even years or it can be said to be an increase in the following 2 years. This can be a reference for producers to increase productivity in odd years to meet stable market needs.

Downloads

References

Anggraeni, O. J. (2019). Peramalan harga dan permintaan komoditas tembakau di Kabupaten Jember. Jurnal Ilmiah Inovasi, 13(1). https://doi.org/10.25047/jii.v13i1.111

Astuti, D. E. W., Supardi, S., Awami, S. N., & Hastuti, D. (2021). Faktor yang mempengaruhi produksi tembakau (Nicotiana tabacum) di Kecamatan Sulang Kabupaten Rembang. Jurnal Social Economic of Agriculture, 10(1), 1. https://doi.org/10.26418/j.sea.v10i1.46831

Dhamayanti, R., Rohma, M. F., & Zahara, S. (2021). Penggunaan deep learning dengan metode convolutional neural network untuk klasifikasi kualitas sayur kol berdasarkan citra fisik. SUBMIT: Jurnal Ilmiah Teknologi Informasi dan Sains, 1(1), 08–15.

Dianawati, M., & Hamdani, K. K. (2022). Produksi beberapa varietas tembakau lokal pada tanah di Kabupaten Garut. Jurnal Bioindustri, 4(2), 1–9.

Fahrizal, R., Yusuf, M., & Artikel, I. (2021). Klasifikasi virus pada paru-paru dalam gambar X-ray menggunakan convolution neural network. Jurnal Ilmiah Setrum, 10(1), 86–94. https://doi.org/10.36055/setrum.v10i1.11441

Hassan, E., Shams, M. Y., Hikal, N. A., & Elmougy, S. (2023). The effect of choosing optimizer algorithms to improve computer vision tasks: A comparative study. Multimedia Tools and Applications, 82(11). https://doi.org/10.1007/s11042-022-13820-0

Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. 15(14), 5481–5487.

Nugroho, B., Puspaningrum, E. Y., & Munir, M. S. (2021). Kinerja algoritma optimasi root-mean-square propagation dan stochastic gradient descent pada klasifikasi pneumonia Covid-19 menggunakan CNN. Jurnal Edukasi dan Penelitian Informatika (JEPIN), 7(3), 420. https://doi.org/10.26418/jp.v7i3.49172

Nur Cahyo, D. D., Fauzi, M. A., Nugroho, J. T., & Kusrini, K. (2023). Analisis perbandingan optimizer pada arsitektur NASNetMobile convolutional neural network untuk klasifikasi ras kucing. Jurnal Teknologi, 15(2), 171–177. https://doi.org/10.34151/jurtek.v15i2.4025

Ompusunggu, P. T. (2022). Klasifikasi penyakit tanaman pada daun kentang dengan metode convolutional neural network arsitektur MobileNet. Jurnal Syntax Fusion, 2(9), 1–12. https://doi.org/10.54543/fusion.v2i09.217

Rochmawati, N., Hidayati, H. B., Yamasari, Y., Tjahyaningtijas, H. P. A., Yustanti, W., & Prihanto, A. (2021). Analisa learning rate dan batch size pada klasifikasi Covid menggunakan deep learning dengan optimizer Adam. Journal of Information Engineering and Educational Technology, 5(2), 44–48. https://doi.org/10.26740/jieet.v5n2.p44-48

Salwa, N., Tatsara, N., Amalia, R., & Zohra, A. F. (2018). Model prediksi liku kalibrasi menggunakan pendekatan jaringan saraf tiruan (JST) (Studi kasus: Sub DAS Siak Hulu). Journal of Data Analysis, 1(2011), 21–31. http://ce.unri.ac.id

Setiawan, A. W., Rahman, Y. A., Faisal, A., Siburian, M., Resfita, N., Gifari, M. W., Setiawan, R., Bandung, T., Moeloek, R. A., & Korespondensi, P. (2021). Deteksi malaria berbasis segmentasi warna citra dan pembelajaran mesin. Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), 8(4), 769–776. https://doi.org/10.25126/jtiik.202184377

Setiawan, Y., Tarno, T., & Kartikasari, P. (2022). Prediksi harga jual kakao dengan metode long short-term memory menggunakan metode optimasi root mean square propagation dan adaptive moment estimation dilengkapi GUI RShiny. Jurnal Gaussian, 11(1), 99–107. https://doi.org/10.14710/j.gauss.v11i1.33994

Suharsimi, A. (2006). Prosedur penelitian suatu pendekatan praktik (hlm. 134). Rineka Cipta.

Syafieq, M. A. (2018). Tradisi petani tembakau pada saat musim tembakau di Dusun Lamuk Legok, Desa Legoksari, Kecamatan Tlogomulyo, Kabupaten Temanggung. Jurnal Pendidikan Sosiologi, 6(10), 1.

Zahara, S., Sugianto, & Ilmiddafiq, M. B. (2019). Prediksi indeks harga konsumen menggunakan metode long short term memory (LSTM) berbasis cloud computing. Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), 3(3), 357–363. https://doi.org/10.29207/resti.v3i3.1086

Zahara, S., Sugianto, & Ilmiddaviq, M. B. (2020). Consumer price index prediction using long short term memory (LSTM) based cloud computing. Journal of Physics: Conference Series, 1456(1). https://doi.org/10.1088/1742-6596/1456/1/012022

Downloads

Published

2025-03-19

How to Cite

Meysin Andira. (2025). Metode Autoregressive Integrated Moving Average (Arima) dalam Memprediksi Produksi Tembakau Sumatera Utara . Algoritma : Jurnal Matematika, Ilmu Pengetahuan Alam, Kebumian Dan Angkasa, 3(2), 35–48. https://doi.org/10.62383/algoritma.v3i2.435

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.