Implementasi Fast Fourier Transform dalam Penyelesaian Persamaan Difusi Panas Satu Dimensi
DOI:
https://doi.org/10.62383/algoritma.v2i6.290Keywords:
Fast Fourier Transform (FFT), 1-D Heat Diffusion Equation, Numerical Accuracy, Stability, VariationAbstract
The Fast Fourier Transform (FFT) method for solving the 1-D heat diffusion equation offers an efficient approach for resolving partial differential equations (PDEs) with various time steps . FFT is used to transform the 1-D heat diffusion equation into the frequency domain and back to the time domain through inverse FFT. Using mathematical modeling with initial and Dirichlet boundary conditions, the numerical solutions produced by FFT are compared with analytical solutions. The accuracy of the method is validated using MAE and MSE calculated in Matlab. At several time intervals , the obtained MAE and MSE values indicate a good agreement between the numerical and analytical solutions, with very small errors. Numerical stability analysis confirms the reliability of the FFT method across various The variation in time step has a significant impact on the accuracy and stability of the solution. Smaller time steps improve accuracy and stability but require longer computation times. The optimal time step selected in this study is Increasing the number of discretization points also enhances accuracy but implies an increase in computational load and memory usage. The FFT method demonstrates good numerical consistency with increasing
Downloads
References
Bracewell, R. N., (1986): The Fourier Transform and Its Applications, McGraw- Hill.
Cooley, J. W., dan Tukey, J. W., (1965): An Algorithm for the Machine Calculation of Complex Fourier Series, Mathematics of Computation, 19, 297–301.
Garnadi, A. D., (2004): Masalah Syarat Batas Bebas Persamaan Diferensial Parsial Parabolik Satu-Dimensi.
Haberman, R., (2013): Applied Partial Differential Equation With Fourier Series And Boundary Value Problems, 5th edn, Pearson Education, New Jersey.
Humi, M., dan Miller, W. B., (1991): Boundary Value Problem and Partial Differ- ential Equations, PWS Publishing Company, Boston, MA, USA.
Irawan, F. A., (2012): Buku Pintar Pemrograman Matlab, Mediakom, Yogyakarta.
Kim, T., (2003), Determination of Frequencies from Fringe Patterns Using Short- time Fourier Transforms and Wavelet Transforms, PhD thesis, Illinois Institute of Technology, Chicago, US.
Lasijo, R., (2000): Perhitungan Transformasi Fourier Cepat 1-dimensi dengan Radiks Gabungan Empat dan Dua Serta Contoh Penggunaannya, Jurnal Sains Dan Teknologi Nuklir Indonesia (Indonesian Journal of Nuclear Science and Technology), 1(2), 99–119.
Lyons, R. G., (1997): Understanding Digital Signal Processing, 3/E, Pearson Education India.
Maghfur, M. A., dan Kusumastuti, A., (2017), Penyelesaian Masalah Difusi Panas pada Suatu Kabel Panjang, dalam Seminar Nasional Matematika dan Aplikasinya Universitas Airlangga, 65–72.
Nair, S., (2011): Advanced Topics in Applied Mathematics: for Engineering and the Physical Sciences, Cambridge University Press, New York.
Nazir, M., (2003): Metode Penelitian, Ghalia Indonesia, Jakarta.
Oktavia, A., (2013): Eksistensi Soliton pada Persamaan Korteweg-De Vries, Jurnal Matematika Unand, 3(1), 9–16.
Oktavia, D., (2018): Solusi Asimtotik pada Persamaan Difusi dengan Waktu Singkat, Jurnal Matematika UNAND, 7(1), 59–63.
O’Neil, P. V., (2014): Beginning Partial Differential Equation, John Wiley & Sons, New Jersey.
Smith, S. W., (2011), : Chapter 12: The Fast Fourier Transform. Recuperado el Januari de 2015, de www.dspguide.com: http://www.dspguide.com/ch12.htm.
Strauss, W. A., (2008): Partial Differential Equations: An Introduction, 2nd edn, John Wiley & Sons, Danvers.
Tipler, P. A., dan Mosca, G., (2008): Physics for Scientists and Engineers, 6th edn,
W. H. Freeman and Company, New York.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Algoritma : Jurnal Matematika, Ilmu pengetahuan Alam, Kebumian dan Angkasa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.