Penerapan Metode Runge-Kutta Orde 3 Untuk Penyelesaian Persamaan Diferensial Biasa

Studi Kasus di Matlab

Authors

  • Asri cahyati sitorus pane Universitas Negeri Medan
  • Novaria Br. Saragih Universitas Negeri Medan
  • Jadata Dompak Ambarita Universitas Negeri Medan

DOI:

https://doi.org/10.62383/algoritma.v2i6.263

Keywords:

Differential Equation, MATLAB, Numeric, Runge Kutta

Abstract

This research studies the application of the nth order Runge-kutta method as a numerical solution to ordinary differential equations. This method was chosen because it is able to provide high accuracy and flexibility in various PDB problems. We implement the nth-order Runge-Kutta algorithm in MATLAB and compare with other numerical methods, such as Euler's method. The results show that the nth order Runge-Kutta method is able to produce more accurate solutions, especially for nonlinear systems. This research makes a significant contribution to the development of numerical solutions for PDB and shows the potential of MATLAB as an effective tool for numerical simulation. Sensitivity analyzes of parameters and time steps were also performed to understand the impact of variations on stability and convergence.

Downloads

Download data is not yet available.

References

Alda, R. I., & Muh. I. (2024). Solusi numerik model penyebaran penyakit ISPA menggunakan metode Runge Kutta orde lima (Studi kasus: Kabupaten Gowa). Jurnal MSA (Matematika dan Statistika serta Aplikasinya), 11(2), 87–92. https://doi.org/10.24252/msa.v11i2.43086

Fatahillah, A., Istiqomah, M., & Dafik, D. (2021). Pemodelan matematika pada kasus kecanduan game online menggunakan metode Runge-Kutta orde 14. Limits: Journal of Mathematics and Its Applications, 18(2), 129. https://doi.org/10.12962/limits.v18i2.6854

Hikmawati Pathuddin, R. I., & Rismayanti. (2022). Solusi numerik model penyebaran penyakit Covid-19 di Sulawesi Selatan dengan metode Runge-Kutta orde empat. Jurnal MSA (Matematika dan Statistika serta Aplikasinya), 10(2), 116–123. https://doi.org/10.24252/msa.v10i2.33817

Ludji, D. G., & Buan, F. C. H. (2023). Penerapan metode Runge-Kutta orde 4 pada pemodelan penularan penyakit cacar monyet. Journal of Mathematics Computations and Statistics, 6(1), 1. https://doi.org/10.35580/jmathcos.v6i1.37110

Munir, R. (2021). Metode numerik revisi kelima. Informatika Bandung.

Nugraha, A. M., & Nurullaeli, N. (2023). Graphical User Interface (GUI) Matlab untuk penyelesaian persamaan diferensial biasa orde satu. Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi), 7(1), 182–185. https://doi.org/10.30998/semnasristek.v7i1.6269

Rijoly, M. E., & Rumlawang, F. Y. (2020). Penyelesaian numerik persamaan diferensial orde dua dengan metode Runge-Kutta orde empat pada rangkaian listrik seri LC. Tensor: Pure and Applied Mathematics Journal, 1(1), 7–14. https://doi.org/10.30598/tensorvol1iss1pp7-14

Setiawan, L. I., & Mungkasi, S. (2021). Penyelesaian model epidemi SIR menggunakan metode Runge-Kutta orde empat dan metode Adams-Bashforth-Moulton. Komputasi: Jurnal Ilmiah Ilmu Komputer dan Matematika, 18(2), 55–61. https://doi.org/10.33751/komputasi.v18i2.3623

Sharma, P. L., & Kumar, A. (2021). Demonstration study on Runge-Kutta fourth order method by using MATLAB programming. 17(4), 1–9. https://doi.org/10.9790/5728-1704030109

Sitompul, H. A., & Siahaan, E. (2022a). Akurasi solusi numerik pada persamaan gelombang berdimensi-satu. Jurnal Penelitian Fisikawan, 5, 54–63.

Sitompul, H. A., & Siahaan, E. W. B. (2022b). Solusi numerik persamaan diferensial biasa orde dua dengan sistem persamaan nonlinier. Jurnal Ilmiah Teknik Sipil, 11(2), 379. https://doi.org/10.46930/tekniksipil.v11i2.2841

Sitompul, H. A., & Siahaan, E. W. B. (2024). Solusi persamaan diferensial biasa orde tinggi dengan metode polinomial dan Runge Kutta. Jurnal Penelitian Fisikawan, 7(1), 32. https://doi.org/10.46930/jurnalpenelitianfisikawan.v7i1.4185

Ulfa, F., & Wartono. (2019). Modifikasi metode Runge-Kutta orde empat klasik menggunakan deret Lehmer dengan P=1 dan P=4. Journal of Chemical Information and Modeling, 1, 7–15.

Published

2024-10-11

How to Cite

Asri cahyati sitorus pane, Novaria Br. Saragih, & Jadata Dompak Ambarita. (2024). Penerapan Metode Runge-Kutta Orde 3 Untuk Penyelesaian Persamaan Diferensial Biasa : Studi Kasus di Matlab. Algoritma : Jurnal Matematika, Ilmu Pengetahuan Alam, Kebumian Dan Angkasa, 2(6), 10–19. https://doi.org/10.62383/algoritma.v2i6.263

Similar Articles

You may also start an advanced similarity search for this article.