Implementasi Algoritma Apriori pada Market Basket Analysis terhadap Data Penjualan Produk Supermarket

Authors

  • Andy Hermawan Universitas Indraprasta PGRI
  • Bayu Wicaksono Purwadhika Digital Technology School
  • Tigfhar Ahmadjayadi Purwadhika Digital Technology School
  • Bagas Surya Prakasa Purwadhika Digital Technology School
  • Jasico Dacomoro Aruan Purwadhika Digital Technology School

DOI:

https://doi.org/10.62383/algoritma.v2i5.137

Keywords:

Market Basket Analysis, Association Rule Learning, Apriori Algorithm

Abstract

Market Basket Analysis (MBA) is an analytical technique used to identify relationships between items in purchasing transactions. This notebook uses retail transaction datasets and the Apriori algorithm to discover hidden associations and patterns that retailers can leverage in optimizing marketing strategies, store layouts, and product recommendations. Through initial data processing, data exploration, and application of the Apriori algorithm, this analysis succeeded in identifying various significant associations between items that are frequently purchased together. The results provide valuable insights for retailers to develop targeted promotions and improve customer shopping experiences, while emphasizing the importance of selecting the right parameters to obtain accurate and relevant results.

Downloads

Download data is not yet available.

References

Alamsyah, B. P., Rosiani, U. D., & Wakhidah, R. (2021). Sistem rekomendasi pembelian barang berdasarkan pola pembelian konsumen menggunakan metode association rule apriori. Seminar Informatika Aplikatif Polinema, 72–76.

Alfiqra, A., & Alfizi, F. Y. (2018). Penerapan market basket analysis menggunakan proses KDD (Knowledge Discovery in Database) sebagai strategi penjualan produk swalayan (Studi Kasus: Swalayan X).

Daliyah, R. (2020). Analisis perilaku konsumsi pengguna aplikasi e-money pada mahasiswa Fakultas Ekonomi Universitas Negeri Surabaya. Jurnal Pendidikan Tata Niaga (JPTN), 8(3), 946–952. https://doi.org/10.26740/jptn.v8n3.p946-952

Dhanalakshmi, M., & Sankari, E. S. (2014). Privacy preserving data mining techniques-survey. International Conference on Information Communication and Embedded Systems (ICICES2014), 1–6. https://doi.org/10.1109/ICICES.2014.7033869

Fahrudin, Nur Fitrianti. (2019). Penerapan algoritma apriori untuk market basket analysis. MIND (Multimedia Artificial Intelligent Networking Database) Journal, 4(1), 13–23. https://doi.org/10.26760/mindjournal.v4i1.13-23

Garg, R., & Gulia, P. (2015). Comparative study of frequent itemset mining algorithms apriori and FP growth. International Journal of Computer Applications, 126(4), 8-12.

Hossain, M., Sattar, A.S., & Paul, M.K. (2019). Market basket analysis using apriori and FP-growth algorithm. 2019 22nd International Conference on Computer and Information Technology (ICCIT), 1-6. IEEE.

Idris, A.I., et al. (2022). Comparison of apriori, apriori-TID and FP-growth algorithms in market basket analysis at grocery stores. The IJICS (International Journal of Informatics and Computer Science), 6(2). https://doi.org/10.30865/ijics.v6i2.4535

Ilham, A., et al. (2018). Market basket analysis using apriori and FP-growth for analysis consumer expenditure patterns at Berkah Mart in Pekanbaru Riau. Journal of Physics: Conference Series, 1114(1), 012131.

Kalakota, R., & Robinson, M. (2001). E-business 2.0: Roadmap for success (2nd ed.). Addison Wesley.

Kaur, M., & Kang, S. (2016). Market basket analysis: Identify the changing trends of market data using association rule mining. Procedia Computer Science, 85, 78–85.

Khushi, G., Shah, K., & Kadam, A. A. (2023). E-commerce market basket analysis using apriori algorithm. International Journal of Scientific Research in Engineering and Management (IJSREM).

Kumar, B.S., & Rukmani, K.V. (2010). Implementation of web usage mining using apriori and FP growth algorithms. International Journal of Advanced Networking and Applications, 1(06), 400-404.

Musalem, A., Aburto, L., & Bosch, M. (2018). Market basket analysis insights to support category management. European Journal of Marketing, 52(7/8), 1550–1573.

Qoniah, I., & Priandika, A. T. (2020). Analisis market basket untuk menentukan asosiasi rule dengan algoritma apriori (Studi Kasus: Tb. Menara). Jurnal Teknologi Dan Sistem Informasi, 1(2), 26–33. https://doi.org/10.33365/jtsi.v1i2.368

Sadikoglu, G. (2017). Modeling of the travelers’ shopping motivation and their buying behavior using fuzzy logic. Procedia Computer Science, 120, 805–811.

Sharma, N., Arora, Y., Makkar, P., Sharma, V., & Gupta, H. (2021). Real estate price’s forecasting through predictive modelling. Machine Learning for Predictive Analysis, 589-597. Springer, Singapore.

Tana, M.P., et al. (2018). Penerapan metode data mining market basket analysis terhadap data penjualan produk pada Toko Oase menggunakan algoritma apriori. JIMP (Jurnal Informatika Merdeka Pasuruan), 3(2). https://doi.org/10.37438/jimp.v3i2.167

Umar, E., Manongga, D., & Iriani, A. (2022). Market basket analysis menggunakan association rule dan algoritma apriori pada produk penjualan mitra swalayan Salatiga. Jurnal Media Informatika Budidarma, 6(3), 1367–1377. https://doi.org/10.30865/mib.v6i3.4217

Published

2024-06-26

How to Cite

Andy Hermawan, Bayu Wicaksono, Tigfhar Ahmadjayadi, Bagas Surya Prakasa, & Jasico Dacomoro Aruan. (2024). Implementasi Algoritma Apriori pada Market Basket Analysis terhadap Data Penjualan Produk Supermarket. Algoritma : Jurnal Matematika, Ilmu Pengetahuan Alam, Kebumian Dan Angkasa, 2(5), 95–105. https://doi.org/10.62383/algoritma.v2i5.137

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.