Infinity Theory
DOI:
https://doi.org/10.62383/bilangan.v3i2.462Keywords:
Infinity, Inverse of Infinity, Inverse of zero, the symbol (a,b):y and the concept of approachAbstract
. This research defines Infinity, Inverse of Infinity, and Inverse of zero, the concept of approach, the symbol (a,b):y and show that, Infinity theory: i- Infinity is a natural number i.e (∞∈N). ii- The Inverse of infinity is not equal to zero and the Inverse of zero is not equal to infinity (1/∞≠0,1/0≠∞). Also, show that if 1/∞ is real number, then 1/∞ equals zero. And the set of real numbers is equals to the set of rational numbers (R=Q).
Downloads
References
Maria, Kattou, Michael Thanasia, Kontoyianni Katerina, Christou Constantinos, and Philippou George. 2010. “TEACHERS’PERCEPTIONS ABOUT INFINITY: A PROCESS OR AN OBJECT?” CERME 6–WORKING GROUP 10 1771.
Sierpińska, Anna. 1987. “Humanities Students and Epistemological Obstacles Related to Limits.” Educational Studies in Mathematics 18(4):371–97.
Szydlik, Jennifer Earles. 2000. “Mathematical Beliefs and Conceptual Understanding of the Limit of a Function.” Journal for Research in Mathematics Education 31(3):258–76.
Tall, D. 1996. “Thinking about Infinity.” International Handbook of Mathematics Education 504–11.
Tall, David, and Shlomo Vinner. 1981. “Concept Image and Concept Definition in Mathematics with Particular Reference to Limits and Continuity.” Educational Studies in Mathematics 12(2):151–69.
Vollrath, Hans-Joachim. 1987. “Begriffsbildung Als Schöpferisches Tun Im Mathematikunterricht.” Zentralblatt Für Didaktik Der Mathematik 19(3):123–27.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Bilangan : Jurnal Ilmiah Matematika, Kebumian dan Angkasa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.