Pengelompokkan Faktor yang Memengaruhi Kemiskinan di Jawa Timur Tahun 2023 Menggunakan Analisis Cluster

Authors

  • Abghaza Bayu Kusuma Wardhana Institut Teknologi Sepuluh Nopember
  • Rakha Maheswara Institut Teknologi Sepuluh Nopember
  • Sri Pingit Wulandari Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.62383/algoritma.v2i6.304

Keywords:

Cluster Analysis, Average Linkage, Complete Linkage, K-Means, Single linkage.

Abstract

Poverty means the inability to fulfill the basic needs of family members, both food and non-food.  In this study, we will analyze several indicators that are assumed to be factors that influence poverty in East Java in 2023, including East Java in 2023, including the percentage of poor people, life expectancy, average years of schooling, and unemployment rate. life expectancy, average years of schooling, and open unemployment rate using cluster analysis to group kabupatens. cluster analysis to group districts/cities into clusters based on the factors that influence poverty. factors that influence poverty. The data used is secondary data obtained through the Central Bureau of Statistics (BPS) website as much as 38 data. Then the data obtained were analyzed for data characteristics, multivariate normal distribution assumption test, independent assumption test, and cluster analysis. assumption test, multivariate normal distribution, independent assumption test, cluster analysis hierarchical, and non-hierarchical cluster analysis, and selection of the best method to determine the optimum cluster. optimum cluster. So that the results obtained data characteristics tend not to be equal, fulfill the multivariate normal distribution assumption test, dependent data. At Hierarchical clustering results obtained the grouping of districts/cities in East Java based on the factors that influence poverty into 5 based on factors that influence poverty into 5 clusters, with 7 districts/municipalities in cluster 1, 16 districts/municipalities in cluster 2, 10 districts/municipalities in cluster 3, 4 districts/municipalities in cluster 4. districts/municipalities in cluster 3, 4 districts/municipalities in cluster 4, and 1 district/municipality in cluster 5. Based on these results, differences in characteristics between clusters indicates that there are significant variations in poverty factors in each region. The results of the non-hierarchical clustering resulted in the grouping of districts/municipalities in East Java based on the factors affecting poverty into 2 clusters, with 13 clusters. factors that influence poverty as many as 2 clusters, with 13 cluster 1, 25 districts/cities in cluster 2. Also, the results of the ANOVA test results obtained the results of all variables of the factors that influencing poverty in districts/municipalities in East Java Province significantly on poverty.

Downloads

Download data is not yet available.

References

Agustiya, K. W. D. N. N. F. B., & H. H. (2024). Kontribusi Dinas Sosial dalam upaya pengentasan kemiskinan di Kabupaten Jember. Jurnal Pengabdian Mandiri, 3(2), 193–200.

Apriliana, T., & W. E. (2023). Analisis cluster hierarki untuk pengelompokan provinsi di Indonesia berdasarkan jumlah base transceiver station dan kekuatan sinyal. KONSTELASI: Konvergensi Teknologi dan Sistem Informasi, 3(2), 286–296.

Baroroh, A. (2012). Analisis multivariat dan time series dengan SPSS 21. Tangerang Selatan: PT. Elek Media Komputindo.

Ghozali, I. (2016). Aplikasi analisis multivariate dengan program IBM SPSS (Edisi 8). Semarang: Badan Penerbit Universitas Diponegoro.

Kuncoro, M. (2004). Otonomi daerah dan pembangunan daerah: Reformasi, perencanaan, strategi dan peluang. Jakarta: Erlangga.

Kurniawan, R., & Yuniarto, B. (2016). Analisis regresi. Jakarta: Kencana.

Mardiana, D. K. N. S. L. (2022). Analisis diskriminan dengan K fold cross validation untuk. Buletin Ilmiah, 97–102.

Maulana, P., & A. (n.d.). Analisis pengaruh kemiskinan dan kondisi ekonomi terhadap indeks pembangunan manusia di Provinsi Jawa Tengah tahun 2013-2017.

Mubarok, A. R. M. I. (2021). Pemetaan zona risiko penularan Covid-19 di Sulawesi Selatan menggunakan plot dendrogram hierarchical clustering. Makassar: Badan Pusat Statistik.

Putriana, U. S. Y., & N. N. (2016). Metode cluster analysis untuk pengelompokan kabupaten/kota di Provinsi Jawa Tengah berdasarkan variabel yang mempengaruhi kemiskinan pada tahun 2013. Jurnal Statistika Industri dan Komputasi, 1(1), 38–52.

Rachmatin, D. (2014). Aplikasi metode-metode agglomerative dalam analisis klaster pada data tingkat populasi udara. Infinity, 3(2), 133–149.

Sarwono. (2007). Analisis multivariat: Arti dan interpretasi. Jakarta: PT. Rineka Cipta.

Sitinjak, M. L., & Banurea, M. J. S. (2023). Statistika dasar. Banyumas: Wawasan Ilmu.

Usman, H., & Sobari, N. (2013). Aplikasi teknik multivariate untuk riset pemasaran. Jakarta: PT Raja Grafindo Persada.

Downloads

Published

2024-11-20

How to Cite

Abghaza Bayu Kusuma Wardhana, Rakha Maheswara, & Sri Pingit Wulandari. (2024). Pengelompokkan Faktor yang Memengaruhi Kemiskinan di Jawa Timur Tahun 2023 Menggunakan Analisis Cluster. Algoritma : Jurnal Matematika, Ilmu Pengetahuan Alam, Kebumian Dan Angkasa, 2(6), 205–227. https://doi.org/10.62383/algoritma.v2i6.304

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.