Comparison Of Some Estimation Methods For The Estimators Of Marshall Olkin Distribution With Simulation
DOI:
https://doi.org/10.62383/bilangan.v2i4.204Keywords:
Marshall Olkin distributions, Probability density function, Cumulative density function, Maximum likelihood estimation method, Robust estimation method, Mean square errorAbstract
The research comprised multiple simulated tests to determine the relationship between (sample size, distribution parameter value, estimation method, and pollution indivuduales). The experimental findings indicate that the estimator is influenced by sample size, the value of distribution parameter, estimation method, and pollution indivuduales. The results of the mean square error analysis indicate that (robust estimation method) produces the best results with the lowest mean square error, and the best estimation method was (191) of (243) simulation experiments. Additional statistical distributions with additional factors can be performed to demonstrate additional results.
Downloads
References
Gillariose, J., Tomy, L., Chesneau, C., & Jose, M. (2021). Recent developments in Marshall-Olkin distributions. Contributions to Mathematics, 2, 71–75.
Handique, L., & Chakraborty, S. (2015). The Marshall-Olkin-Kumarswamy-G family of distributions. arXiv preprint. https://arxiv.org/abs/1509.08108
Jamalizadeh, A., & Kundu, D. (2013). Weighted Marshall–Olkin bivariate exponential distribution. Statistics, 47(5), 917–928.
Jayakumar, K., & Sankaran, K. (2017). Generalized exponential truncated negative binomial distribution. American Journal of Mathematical and Management Sciences, 36(2), 98–111.
Muhammad, M., & Liu, L. (2019). Characterization of Marshall-Olkin-G family of distributions by truncated moments. Journal of Mathematics and Computational Science, 19(3), 192–202.
Orabi, A., & Ziedan, D. (2021). Robust estimators for Marshall-Olkin extended linear exponential distribution. International Journal of Statistics and Applications. https://doi.org/10.5923/j.statistics.20211101.03
Williams, M. S., Ebel, E. D., & Cao, Y. (2013). Fitting distributions to microbial contamination data collected with an unequal probability sampling design. Journal of Applied Microbiology, 114(1), 152–160.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bilangan : Jurnal Ilmiah Matematika, Kebumian dan Angkasa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.