Analisis Metode Clustering K-Means pada Zonasi Daerah Terdampak Banjir di Kota Medan dengan Evaluasi Silhouette Coefficient
DOI:
https://doi.org/10.62383/algoritma.v2i6.270Keywords:
Clustering, K-Means, Silhouette CoefficientAbstract
Clustering is one of the fields of study that discusses data. Clustering is used to find and group data based on its traits or characteristics. Clustering can also be used for class-identified data. However, the clustering method automatically clusters the data before the class identifier is known. Based on the data obtained, the city of Medan, which has a population of approximately 2,460,858 people and an area of 26,510 hectares or 3.6% of the total area of North Sumatra Province, is classified as Flood-prone (BPS). Floods that occur almost 10 to 12 times a year in Medan City are influenced by the condition of the downstream Deli and Belawan rivers. Based on the results of the k-means clustering that has been carried out, the areas that are safe from flooding are the districts of Meddan Amplas, Medan Denai, Medan Area, Medan Kota, Medan Petisah, Medan Perjuangan, Medan Tembung, Medan Deli, and Medan Labuhan. Areas prone to flooding are Medan Tuntungan, Medan Sunggal, Medan Helvetia, West Medan, and Medan Marelan. Meanwhile, the areas most prone to flooding are Medan Johor, Medan Maimun, Medan Polonia, Medan Baru, Medan Selayang, Medan Timur, and Medan Belawan based on the evaluation of the accuracy of the silhouette method of 0.9 and can be declared significant.
Downloads
References
Afifah, N., Rini, D. C., and Lubab, A. 2016. “Pengklasteran Lahan Sawah Di Indonesia Menggunakan Fuzzy C-Means”. Journal Matematika MANTIK, 02(01): 4045.
Alamsyah, B., and Nuraini, C., and Kuswandi, and Suwarno,B. 2018. “Strategi Manajemen Mitigasi Bencana Pesisir Pantai Timur Sumatera Utara”, Medan : UNPRIPRESS.
Aminah, S. 2018. “Implementasi Permendikbud No 17 Tahun 2017 Tentang Penerimaan Peserta Didik Baru di SMA Negeri 1 Prambon Nganjuk Tahun 2017/2018”. Undergraduate (S1) thesis, IAIN Kediri, Diakses Pada Tanggal 19 Februari 2022. http://etheses.iainkediri.ac.id/766/
Darwiyanto, E., and Binawan, P. B., and Junaedi, D. 2017. “Aplikasi GIS Klasifikasi Tingkat Kerawanan Banjir Wilayah Kabupaten Bandung Menggunakan Metode Weighted Product”. Journal on Computing, 2(1): 59-70.
Dehotman, B, J. 2018. “Peningkatan Hasil Evaluasi Clustering Davies- Bouldin Index Dengan Penentuan Titik Pusat Cluster Awal Algoritma K-Means”.
Dewi, A. I. D., Pramita, A. K. D. 2019. “Analisis Perbandingan Metode Elbow dan Sillhouette pada Algoritma Clustering K-Medoids dalam Pengelompokkan Produksi Kerajinan Bali”. Journal Matrix, 9(3): 102-109.
Everitt, and Brian, S., Sabine, L., and Morven,L., and Daniel, S. 2011.
Cluster Analysis 5th Addition2011.
Handoyo, and Rendy, R. R., and Nasution, S. N. 2014. “Perbandingan Metode Clustering Menggunakan Metode Single Linkage Dan K-Means Pada Pengelompokan Dokumen”. Jsm Stmik Mikroskil, 15(2): 73–82.
Hardaningrum, and Oxtavi, and Cecep, S., and Supriyana, E. 2016. “Zonasi Rawan Bencana Gempa Bumi Kota Malang Berdasarkan Analisis Horizontal Vertical to Spectral Ratio ( HVSR )”. 2016: 27-28. https://www.researchgate.net/profile/AdeHeryana/publication/338537206_Pengertian_dan_Jenis_Bencana/links/5e1a694c4585159aa 4c8bbe4/Pengertian-dan-JenisBencana.pdf
Karputri, L. N., and Yustanti, W. 2022. “Analisis Klatering Buku Sebagai Evaluasi untuk Peningkatan Minat Baca Perpustakaan SMAN 1 Grogol”. Journal of Emerging Information System and Business Intelligence (JEISBI), 3(3): 94-101.
Sari, N. N. 2018. 15 Universitas Islam Indonesia K-Affnity Propagation (K-Ap) Clustering Untuk Klasifikasi Gempa Bumi. Yogyakarta.
Tampubolon, K. 2018. “Aplikasi Sistem Informasi Geografis (SIG) Sebagai Penentuan Kawasan Rawan Banjir di Kota Medan”. Journal Pembangunan Perkotaan, 6(2):63-68.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Algoritma : Jurnal Matematika, Ilmu pengetahuan Alam, Kebumian dan Angkasa

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.