Identifikasi Tingkat Kematangan Buah Tomat Melalui Warna dengan Penerapan Jaringan Saraf Tiruan (JST)

Authors

  • Nazwa Alya Faradita Universitas Islam Negeri Sumatera Utara
  • Lailan Sofinah Harahap Universitas Muhammadiyah Sumatera Utara

DOI:

https://doi.org/10.62383/polygon.v2i6.292

Keywords:

Tomato Ripeness, Histogram, Perceptron, Artificial Neural Networks

Abstract

The selection of agricultural and plantation products often relies on human perception of fruit color. Manual identification through visual observation has several drawbacks, such as time consumption, fatigue, and varying perceptions of quality. Digital image processing technology enables automatic sorting of products. This study applies the Perceptron learning method to identify tomato ripeness. Tomato images are captured using a webcam, analyzed through color histograms, and identified using artificial neural networks. The identification success rate reaches 43.33%, with outputs categorized as Unripe (10%), Half-Ripe (6.66%), and Ripe (26.66%).

Downloads

Download data is not yet available.

References

Fitri, Z. E., Rizkiyah, R., Madjid, A., & Imron, A. M. N. (2020). Penerapan Neural Network untuk Klasifkasi Kerusakan Mutu Tomat. Jurnal Rekayasa Elektrika, 16(1). https://doi.org/10.17529/jre.v16i1.15535

Sapriani Gustina. (2024). Aplikasi Machine Learning untuk Mendeteksi Kematangan Tomat menggunakan Metode Backpropagation. Jurnal Engine: Energi, Manufaktur, Dan Material , 8, 81–88.

T.M Johan, & Iza Rifna. (2022). IDENTIFIKASI KEMATANGAN BUAH TOMAT BERDASARKAN WARNA MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN (JST) BACKPROPAGATION. JURNAL TIKA, 7, 309–315.

Umagapi, S., Hamid, M., Ibrahim, A., & Suratin, D. (2021). Mengidentifikasi Kematangan Buah Pala Berdasarkan Ciri Tekstur Menggunakan Metode Backpropagation. Jurnal Teknik Informatika (J-Tifa), 4(1), 12–17. https://doi.org/10.52046/j-tifa.v4i1.1190

Downloads

Published

2024-11-05

How to Cite

Nazwa Alya Faradita, & Lailan Sofinah Harahap. (2024). Identifikasi Tingkat Kematangan Buah Tomat Melalui Warna dengan Penerapan Jaringan Saraf Tiruan (JST). Polygon : Jurnal Ilmu Komputer Dan Ilmu Pengetahuan Alam, 2(6), 71–78. https://doi.org/10.62383/polygon.v2i6.292