Identifikasi Tingkat Kematangan Buah Tomat Melalui Warna dengan Penerapan Jaringan Saraf Tiruan (JST)
DOI:
https://doi.org/10.62383/polygon.v2i6.292Keywords:
Tomato Ripeness, Histogram, Perceptron, Artificial Neural NetworksAbstract
The selection of agricultural and plantation products often relies on human perception of fruit color. Manual identification through visual observation has several drawbacks, such as time consumption, fatigue, and varying perceptions of quality. Digital image processing technology enables automatic sorting of products. This study applies the Perceptron learning method to identify tomato ripeness. Tomato images are captured using a webcam, analyzed through color histograms, and identified using artificial neural networks. The identification success rate reaches 43.33%, with outputs categorized as Unripe (10%), Half-Ripe (6.66%), and Ripe (26.66%).
Downloads
References
Fitri, Z. E., Rizkiyah, R., Madjid, A., & Imron, A. M. N. (2020). Penerapan Neural Network untuk Klasifkasi Kerusakan Mutu Tomat. Jurnal Rekayasa Elektrika, 16(1). https://doi.org/10.17529/jre.v16i1.15535
Sapriani Gustina. (2024). Aplikasi Machine Learning untuk Mendeteksi Kematangan Tomat menggunakan Metode Backpropagation. Jurnal Engine: Energi, Manufaktur, Dan Material , 8, 81–88.
T.M Johan, & Iza Rifna. (2022). IDENTIFIKASI KEMATANGAN BUAH TOMAT BERDASARKAN WARNA MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN (JST) BACKPROPAGATION. JURNAL TIKA, 7, 309–315.
Umagapi, S., Hamid, M., Ibrahim, A., & Suratin, D. (2021). Mengidentifikasi Kematangan Buah Pala Berdasarkan Ciri Tekstur Menggunakan Metode Backpropagation. Jurnal Teknik Informatika (J-Tifa), 4(1), 12–17. https://doi.org/10.52046/j-tifa.v4i1.1190
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Polygon : Jurnal Ilmu Komputer dan Ilmu Pengetahuan Alam

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.