Implementasi Algoritma K-Means Clustering pada Penjualan Sepatu Futsal Merk Specs
DOI:
https://doi.org/10.62383/polygon.v2i3.198Keywords:
Data Mining, Clustering, K-Means, SpecsAbstract
Sport is an activity that is popular and needed by all levels of society to fulfill a healthy lifestyle. Sports cannot be separated from the equipment or equipment used to complete the activity. One of the sports that is often popular, especially among teenage boys, is Futsal. Futsal shoes are equipment that is really needed to support the continuity of this activity. Various brands of futsal shoes are often found on the Indonesian market today. One of them is the Specs brand of futsal shoes. .In this case, the author analyzes sales of Specs brand futsal shoes to determine the grouping of product sales. The method that will be used to solve the problem that will be examined is one of the data mining methods, namely the data grouping method using the K-Means algorithm. The K-Means algorithm is a grouping algorithm that can group a number of data into certain data groups. In this research, sales data is grouped into 2 clusters, namely best-selling and non-selling data. This clustering test was carried out using MS Excel with several processes which then produced several groups of sales data on Specs brand futsal shoes and implemented using the Weka application to find the effectiveness of grouping data on sales of Specs brand futsal shoe products.
Downloads
References
Amin, F., Anggraeni, D. S., & Aini, Q. (2022). Penerapan Metode K-Means dalam Penjualan Produk Souq.Com. Applied Information System and Management (AISM), 5(1), 7–14. https://doi.org/10.15408/aism.v5i1.22534
Bambang, B., & Wahyudi, T. A. (2019). Analisis pengaruh citra perusahaan dan kualitas layanan terhadap loyalitas pelanggan melalui kepuasan pelanggan. Jurnal Manajemen Strategi Dan Aplikasi Bisnis, 2(1), 61–70. https://doi.org/10.36407/jmsab.v2i1.49
Darmi, Y., & Setiawan, A. (2016). PENERAPAN METODE CLUSTERING K-MEANS DALAM. 12(2), 148–157.
Fina Nasari, & Surya Darma, S. (2015). Penerapan K-Means Clustering Pada Data Penerimaan Mahasiswa Baru. Seminar Nasional Teknologi Informasi Dan Multimedia 2015, 73–78.
K-means, M. A., Hutabarat, S. M., & Sindar, A. (2019). Data Mining Penjualan Suku Cadang Sepeda Motor. 2(2), 126–132.
Kusuma, W. D., Suhada, & Saifullah. (2021). Klasifikasi Kepuasan Siswa Terhadap Kinerja Guru SMK Satrya Budi 2 Perdagangan Menggunakan Algoritma C4.5. TIN: Terapan Informatika Nusantara, 2(7), 460–465. https://ejurnal.seminar-id.com/index.php/tin
Mubarok, A., Studi, P., Informasi, S., Unggulan, K., Pendahuluan, I., Indonesia, D., & Menengah, S. (2021). Penerapan Algoritma K-Means Untuk Menentukan Kelas. 23(November).
Nahjan, M. R., Heryana, N., Voutama, A., Komputer, F. I., Karawang, U. S., & Miner, R. (2023). IMPLEMENTASI RAPIDMINER DENGAN METODE CLUSTERING K-MEANS UNTUK ANALISA PENJUALAN PADA TOKO OJ CELL. 7(1), 101–104.
Nur Afifah, I. A., & Nurdiyanto, H. (2023). Data Mining Clustering Dalam Pengelompokan Buku Perpustakaan Mengunakan Algoritma K-Means. JIPI (Jurnal Ilmiah Penelitian Dan Pembelajaran Informatika), 8(3), 802–814. https://doi.org/10.29100/jipi.v8i3.3891
nurul rohmawati, sofi defiyanti, mohamad jajuli. (2015). Implementasi Algoritma K-Means Dalam Pengklasteran Mahasiswa Pelamar Beasiswa. Jitter 2015, I(2), 62–68.
Sulistiyawati, A., & Supriyanto, E. (2021). Implementasi Algoritma K-means Clustring dalam Penetuan Siswa Kelas Unggulan. Jurnal Tekno Kompak, 15(2), 25. https://doi.org/10.33365/jtk.v15i2.1162
Yani, A., Azmi, Z., & Suherdi, D. (2023). Implementasi Data Mining Menganalisa Data Penjualan Menggunakan Algoritma K-Means Clustering. Jurnal Sistem Informasi Triguna Dharma (JURSI TGD), 2(2), 315. https://doi.org/10.53513/jursi.v2i2.6357
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Polygon : Jurnal Ilmu Komputer dan Ilmu Pengetahuan Alam

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.