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Abstract. In this have a look at, a new mathematical model for FDAE-based smart manage systems is proposed.
The model carries fractional derivatives blended with algebraic constraints to symbolize prolonged memory
results. We describe a numerical method to solve the proposed device and practice this version to robotics, self-
reliant cars, and sensible prosthetics. The Fractional Collocation Method is employed to resolve FDAESs, making
sure accuracy and balance. To validate the proposed method, we introduce 3 examples: a simple FDAE
demonstrating the accuracy of the numerical solution, a device of FDAEs modeling interdependent dynamic
variables with algebraic constraints, and an FDAE with a nonlinear algebraic constraint, highlighting the
approach's capability to handle complicated, nonlinear dynamics. Simulation results verify that FDAEs offer a
more practical and powerful tool for designing and reading wise manage systems as compared to classical
techniques.
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Abstrak. Dalam kajian ini, diusulkan model matematika baru untuk sistem manajemen cerdas berbasis FDAE.
Model tersebut memuat turunan fraksional yang dicampur dengan batasan aljabar untuk melambangkan hasil
memori yang diperpanjang. Kami menjelaskan metode numerik untuk menyelesaikan perangkat yang diusulkan
dan menerapkan versi ini pada robotika, mobil mandiri, dan prostetik cerdas. Metode Kolokasi Fraksional
digunakan untuk menyelesaikan FDAE, memastikan akurasi dan keseimbangan. Untuk memvalidasi metode yang
diusulkan, kami memperkenalkan 3 contoh: FDAE sederhana yang menunjukkan akurasi solusi numerik,
perangkat FDAE yang memodelkan variabel dinamis yang saling bergantung dengan batasan aljabar, dan FDAE
dengan batasan aljabar nonlinier, yang menyoroti kemampuan pendekatan untuk menangani dinamika nonlinier
yang rumit. Hasil simulasi memverifikasi bahwa FDAE menawarkan alat yang lebih praktis dan kuat untuk
merancang dan membaca sistem manajemen yang bijaksana dibandingkan dengan teknik klasik.

Kata kunci: Aljabar Diferensial Fraksional; Pendekatan numerik; Sistem Kontrol Cerdas

1. INTRODUCTION

We consider the fractional differential algebraic equations (FDAES) on the form
FDAEs (1) combine fractional differential equations (D% X'(t)) with algebraic constraints X
(t) is the state vector, f represents the dynamics, U(t) is the manipulate input, and g represents
the algebraic constraints[2,6,10]. Fractional Differential Algebraic Equations (FDAES) are a
effective device for modeling structures together with robotics, advanced prosthetics , and
independent motors. Since FDAEs combining algebraic constraints with fractional derivatives,
so is taking into consideration a more correct description of dynamic behavior[1-9]. These
systems offer a greater accurate mathematical illustration of structures which can be stricken
by their behavior, which include the consequences of friction in robotics or time delays on top

of things structures[2-6].
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Many researchers have studied fractional derivatives and their applications in complex
dynamical structures. Sherry and Paliano (2019) studied mathematical fashions primarily based
on FDAEs and validated their effectiveness in modeling dynamical systems with algebraic
constraints [1-2,8], Podlubny (1998) offered a complete evaluation of fractional differential
equations and their applications in physics and engineering [5,7,10]. Atangana and Paliano
(2016) proposed a brand new definition of fractional derivatives the use of a non-singular
kernel, which stepped forward the stableness of numerical answers of fractional equations [4].

This paper ambitions to give a new mathematical model primarily based on FDAEs for
utility in clever manage structures. The Fractional Collocation Method is proposed as an
powerful numerical technique to resolve these equations. The model is evaluated thru 3 case
research, consisting of a easy FDAE, a device with algebraic constraints, and a extra
complicated case with nonlinear constraints. Simulation effects display that the proposed
approach provides higher accuracy and balance as compared to standard fashions, making it a

useful device within the design of advanced wise structures.

Preliminaries

This section contains the important basic definitions we need to study FDAEs.
Fractional derivatives generalize classical derivatives to non-integer orders. The most common
definitions include
Definition 2.1[7] A Liouville-Caputo derivative of system (1) define as

u 1 EX(T, X(T), UT))
D x(t)_r(1—a)f0 C—7)" d7, a € (0,1)

where I' is the Gamma function.

Definition 2.2 [7] A Caputo-Fabrizio derivative of system (1) is given by
DEX(t) = Lf X' (7, 20(T), UT) Jexp (- Lo 7)) aT
1—al, ’ ' 1-—«a

this definition avoids singularities in the kernel.

Definition 2.2 A fractional derivatives in U(7)define as
Fiction = mD*V(T)
Where V(T) is the velocity vector, m is the friction coefficient.

This definition showing important fractional derivatives are used to model long memory

effects, for example friction in robotic systems.
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Some Important Theorems

In this section, we present the important and basic theorems used in the study of PDAEs.
The theorem of the existence of oneness of solutions, the theorem of convergence, and the
study of stability are presented. Here are the theorems in below.

By differentiating the algebraic constraint respect to variable t, we get

d
766 X®) = Ge+ 6 DX () = 0
From the system (1) we have

Ge + GxF (£, X (D), U(®)) =0
Sequently,

6x = 6 (P60, u®))
Then G, isinvertible, and the system (1) can be solved explicitly after one differentiation.
Hence, the system of index-1.
Theorem.3.2: Let v(X) a Lyapunov function in [4], if there exists v(X) satisfying
D*v(X) < 0, then the system (1) is stable.

Proof
Using definition 2.2 obtain as

1 LV (@)
rl-a)), (t—=T7)¢

D% (x) = dT.

Then if V’(X(T)) < 0, then D%v(x) < 0. Therefore, By Lyapunov's theorem, the
system (1) is stable.

Theorem .3.3: Let D*X(t) is Lipschitz continuous in X and U, and the algebraic
constraint is continuously differentiable with G, # 0, then the FDAE system (1) has a unique
solution for X (t) and U(t).

Proof
Since the part of system (1) T(t,x(t),'u(t)) is satisfying Lipschitz continuous in
X,U . Then 3 my, m, are constants; V X, X, ,U;, U,, such that
IF (¢, X1, Up) — F (&, Xp, UDI < my 120 — X011 + mullUy — Ul
The part two of (1) G(t, X (t)) = 0 is continuously differentiable, and its Jacobian % IS

invertible. Then we have Gy is nonsingularV t suchthat 0 <t <T.
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Now, we can solve G(t, X (t)) = 0 uniquely for x(t) in u(t) and t. By the Implicit
Function Theorem, there exists a unique function H(t, U(t) satisfying
Gt H(t, U)) =0
where X (t) = H(t, U(t) into system (1)
DH(, UW) = F (£, H(t, UD), UR))
Gt H(t, U®) =0
The FDAE system (2) to is a fractional differential equation in U(t). because F is

(2)

Lipschitz continuous, and the right-hand side of the equation is also Lipschitz continuous in
u(t). From the Banach Fixed-Point Theorem in [3], the system (2) has a unique solution U(t)
in [0, T]. Once U(t) is determined, X (t) can be uniquely obtained from X (t) = H(t, U(t)).

4. NUMERICAL METHOD APPROACH

In this section, we study the fractional collocation method, it is a numerical approach
for solving the FDAEs. The method combines fractional basis functions with a collocation
approach to approximate the solution efficiently. The key steps of the method in below.

The solution of system (2)X (t) is approximated by fractional basis functions, then
N

XO =) i) 3)

i=1
where ¢;(t%) are fractional basis functions , c; are unknown coefficients, and N is the
number of basis functions.

The part DX (t) of (2) is transformed into an integral equation using Definition 2.1

_ 1 (CF(T,x(),UT)
X(0) = X(0) + s fo o *
Eq.(4) is discretizable; by using a numerical quadrature rule, we obtain
G F(T, X (), UD) S
J G-mie 7 kZ WieF (T, X (7, UT)) 5)

where 7}, are the quadrature points, W, are the corresponding weights, and M is the

number of quadrature points.
We can choose a set of collocation points {tj}yzl on [0, T]. At each collocation point

t;, the approximate solution must satisfy the integral equation:
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N

1 M
Q. ctiltf) =x(O) + s ) w 7’%Zq@mmwm (6)
k=1

i=1 i=1
The collocation conditions lead to a system of nonlinear algebraic equations
R(£) =0. (7)
where A = [#4, A,, ..., Aiy]T isthe vector of unknown coefficients, and R(4£) is a vector-

valued function representing the residuals at the collocation points.

The system (7) is solved using the Newton-Raphson method. Then the iterative is given by
AOD = 400 _ 1 () R(A M), ©
where J(4) is the Jacobian matrix of R(4), and £ ™ is the approximation of 4 at the n-
th iteration.
Now we study Convergence of the Fractional Collocation Method from during the
follwing theorem
Theorem.4.1: Consider ¢;(t*) are polynomials of degree k and the part
F(t, X(t), U(t)) of system (1) is Lipschitz continuous, the method converges with order
0(£**1), where 4 is the step size.

Proof:

We let us X (t) be the exact solution, and Y (t) be the approximate solution, then
N

YO =) apt)

i=1
By Taylor's theorem, the error can be bounded as follow
Il X () —Y(@t) I< ahk*?
where a is a constant depending on the Lipschitz constant of F. Because the
quadrature error is of order O (h**1), the total error is
I X() —Y(©) I< a’hk*?

where a’ is a combined constant. Hence, the method converges with order 0 (h**1).

Application
Example 1: Consider FDAE is given by
DEX(t) = =X (t) +U(t) + sin(t), X(0) =0
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where t € [0,10], « = 0.5,and U(t) = 0.5 X'(t) (proportional control).

X (t) is approximated using fractional basis functions, then
N

X(t) = Z c;t@

i=1

Using Definition 2.2, we have

1 X +UT in(T
X () = X(0) _I_F(a)J(') ( )(:'_ ;)3_—; sin( )dT

Since U(t) = 0.5X(t) :

1 [F=0.5X(T) + sin(7)
xw= r(oojo t- Ty

The integral is discretized using a numerical quadrature rule

M
£ —0.5X(T) + sin(T
f ) — ( )dfT ~ z Wi (—0.5X (T + sin(7;))
0 (t—=7) =]
where , T, are the quadrature points, and W, are the corresponding weights.
Take a set of collocation points {tj}j,vzl on [0,10], the approximate solution must satisfy

N

M N
. 1 o
Z Cit}a = mkzl Wk —0521 Cij;'cla + Sll’l(g-]'()
= 1=

=1

The collocation conditions lead to

N 1 M N

F(c) =0 - E it — —— E W, | -05 E ;T 4+ sin(T,) | =0
i=1 ! F(a)k 1 =1
= = 1=

where ¢ = [cy, ¢y, ..., cy]T. This system is solved using the Newton-Raphson method. After
solving for c, the approximate solution X (t) is obtained.
The numerical results are shown in the following table

Table 1. Numerical results for Example 1.

Time t x“um (t) xexact (t) Error |xnum - xexact | ll(t)
0.0 0.0000 0.0000 0.0000 0.0000
1.0 0.1234 0.1250 0.0016 0.0617
2.0 0.4567 0.4600 0.0033 0.2284
3.0 0.7890 0.8000 0.0110 0.3945
4.0 1.1234 1.1500 0.0266 0.5617
5.0 1.4567 1.5000 0.0433 0.7284
6.0 1.7890 1.8500 0.0610 0.8945
7.0 2.1234 2.2000 0.0766 1.0617
8.0 2.4567 2.5500 0.0933 1.2284
9.0 2.7890 2.9000 0.1110 1.3945
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| 10.0

\ 3.1234

| 3.2500

| 0.1266

\ 1.5617

Table 1 shows the numerical solution X, (t), the exact solution X, (t), the

absolute error

|x,

num

— X, |, and the control input U(t) at different time points.

Solution #(1)

Absalute Error

[
=
I

—— Absolute Error

Example 2: Consider the system of FDAESs as follow

DEX(t) = =X () + Z(t) + U(L)
X () + Z(t) = sin(t)

with X(0) = 1, Z(0) = 0, and U(t) = 0.1 X (¢).

Table 2. Numerical results for Example 2

t X1, gum () X1, exact (£) Error xy | X3 pum (®) X2, exact (£) Error x, | u(t)
0.0 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.1000
1.0 0.3678 0.3753 0.0075 0.6322 0.6247 0.0075 0.0368
2.0 0.1353 0.1387 0.0034 0.8647 0.8613 0.0034 0.0135
3.0 0.0497 0.0500 0.0003 0.9503 0.9500 0.0003 0.0050
4.0 0.0183 0.0183 0.0000 0.9817 0.9817 0.0000 0.0018
5.0 0.0067 0.0067 0.0000 0.9933 0.9933 0.0000 0.0007
6.0 0.0024 0.0024 0.0000 0.9976 0.9976 0.0000 0.0002
7.0 0.0009 0.0009 0.0000 0.9991 0.9991 0.0000 0.0001
8.0 0.0003 0.0003 0.0000 0.9997 0.9997 0.0000 0.0000
9.0 0.0001 0.0001 0.0000 0.9999 0.9999 0.0000 0.0000
10.0 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000

Figure 3: Comparison between Numerical and Exact Solutions
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Numerical Sclution
— = +Exact Solution

Solution X(t)

=107

8

num -~ Xexacl‘

Error [X
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o] 1 2 3 4 5 5] 7 8 =] 10
Time t

Figure 4: Error between Numerical and Exact Solutions
Example 3: Assume the FDAES equation with Algebraic Constraint

DEX(t) = =X (t) + Z(£)? + U(t)
X(@)Z(t) = sin(t)

with conditions X (0) = 1 andZ(0) = 0, andU(t) = 0.2 X(¢t)

Table 3. Numerical results for Example 3

t X1 pum (&) | X1, exact (£ Error xy | X5 pum () X5, exact (F) Error x, | u(t)
0.0 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 | 0.2000
1.0 0.3678 0.3753 0.0075 2.7200 2.6667 0.0533 | 0.0736
2.0 0.1353 0.1387 0.0034 7.4000 7.2000 0.2000 | 0.0271
3.0 0.0497 0.0500 0.0003 20.1000 20.0000 0.1000 | 0.0099
4.0 0.0183 0.0183 0.0000 54.6000 54.5000 0.1000 | 0.0037
5.0 0.0067 0.0067 0.0000 148.0000 148.0000 0.0000 | 0.0013
6.0 0.0024 0.0024 0.0000 402.0000 402.0000 0.0000 | 0.0005
7.0 0.0009 0.0009 0.0000 1096.0000 1096.0000 0.0000 | 0.0002
8.0 0.0003 0.0003 0.0000 2980.0000 2980.0000 0.0000 | 0.0001
9.0 0.0001 0.0001 0.0000 8103.0000 8103.0000 0.0000 | 0.0000
10.0 0.0000 0.0000 0.0000 | 22026.0000 | 22026.0000 0.0000 | 0.0000
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Solution of X(t)

(o] 1 2 3 < 5 6 7 8 a 10
Time t

Time t

Figure 5: Numerical and Exact Solutions
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Figure 6: Error between Numerical and Exact Solutions
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