Bilangan : Jurnal Ilmiah Matematika, Kebumian dan Angkasa
Volume. 3, Nomor. 1 Tahun 2025

e-ISSN :3032-7113; p-ISSN :3032-6389, Hal 60-78

DOI: https://doi.org/10.62383 /bilangan.v3i1.378

Available online at: https://journal.arimsi.or.id/index.php/Bilangan

Applying New Preconditioned Conjugated Gradient Algorithms to
Unconstrained Optimization Problems

Sabreen M. Abbas!, Abbas Y. Al-Bayati’, Maysoon M. Aziz3

12 Department of Mathematics, College of Computer Sciences and Mathematics, University
of Mosul, Iraq, 3 University of Telafer, Iraq.

Email:mssabreen6@gmail.com?, profabbasalbayati@yahoo.com?, Maysoon M.Aziz@gmail.com?

Abstract: In this paper, we study a new and improved preconditioned conjugate gradient (PCG) algorithm
based on Dai and Liao's procedure to enhance the CG algorithm of (Maulana). The new PCG algorithm
satisfies the coupling condition and the sufficient descent condition. This work proposes improved conjugate
gradient methods to enhance the efficiency and robustness of classical conjugate gradient methods. The study
changes the diagonal of the inverse Hessian approximation to quasi-Newton Broyden-Fletcher-Goldfarb-Shano
(BFGS) updating to make a preconditioner for nonlinear conjugate gradient (NCG) methods used to solve
large-scale optimization problems with no constraints. We will calculate the step size of this two-term algorithm
by accelerating the Wolfe-Powell line searching technique. The proposed new PCG algorithms have proven
their global convergence in certain specific conditions reported in this paper.
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1. INTRODUCTION.
We examine the subsequent unconstrained optimization issue.[1]:
minf (x), Y]

where f:R™ — R The function is continuously differentiable, and its gradient is
accessible. We want to develop an approach for addressing large-scale problems when the
Hessian of f is either unavailable or necessitates significant storage and processing
resources, utilizing iterative techniques of the kind [2]:

Xp+1 = X + Qpdy (2)

Xy 1s the current iteration point and oy is the step length being computed. The
search direction dy is determined by conducting a line search[3]:

d — {_gk-l-ll lfk = 0
fer1 —Jk+1 t+ Prdi ifk=1

3)

The procedure employs the conjugate gradient direction, whereby the notable
parameter [, is derived by equating the conjugate gradient direction with that of the
Newton method [2], [3].

Any methodology of gradient has to update the point by the line search used. The

Wolfe-Powell (WWP) customary search  terms square  measure usually employed
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in CG ways. The search terms within the Weak Wolfe-Powell (WWP) line square
measure as follows:
f () = f() < Saggidy (4)
Gk+1dk = 0y dy (5)

By this condition, dj is a descent search direction such that 0<§ <o < 1.
The Strong Wolfe-Powell (SWP) conditions defined in (4) and satisfies:

|9k +1dk] < 0gjdy (6)

As a generalization of Strong Wolfe conditions, the absolute value opens in (6)
with two disparities of inequality so that:
—0gkdy < Gir1dr < 0gidy

Moreover, from all of these previous conditions we obtain the characteristic of
sufficient descent, namely:
gldy < —cllgil? @)

as long as ¢ > 0 and is a positive number.

The Preconditioned Conjugate Gradient (PCG) technique is an iterative
methodology formulated to resolve extensive sparse systems of linear equations
represented as Ax=b, A represent a symmetric positive-definite matrix. This approach is
an augmentation of the Conjugate Gradient (CG) technique, improved by the application
of a preconditioner to expedite convergence[4], [5].

An invertible matrix s is selected to accelerate convergence, and the concept of
preconditioning is to adjust the variables x = sy. This iteration is obtained by first writing

the conjugate gradient algorithm in the converted variable y and then translating it back to

the x variable[6]:
X1 = X + Qpdy (
dis1 = —Hpy19r41 + HiBrdi 8)

Where p = ss”. The update parameter B; is equivalent to pj (conjugacy
parameter) except that the vectors g, and d, are replaced by sTg, and s™lg,

respectively. As illustrations, we have for example Si® and BER

T T T
ﬂ*FR — Zr+19k+1 — Ik+1HkGk+1 ﬂ*PR — k41K (9)
Ik Ik gkgk IkHigk

The preconditioned residual at iteration k + 1, computed as zy,; = S™1gk.1. We

examine the convergence to attain a more profound comprehension of the effects of
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preconditioning. The velocity of the center of gravity is contingent upon the eigenvalues

of the Hessian matrix. Assume that f is a quadratic function:
fx) = %xTQx + bTx, (10)
Let Q be a symmetric matrix characterized by its eigenvalues 1, = 1, = --- > 1,

all 4;,>20, i=1,23,..,n. The error in the k-th conjugate gradient iterate, when

employing an exact line search, adheres to the subsequent bound[7]

(e —x)TQ(x), — x*) < pmin max(l + Aip(li))z(xo —x)TQ(xg — x*) (11)

Epg—11<isn
Py, represents the collection of polynomials of degree k. For each integer [ € [1, k],
it follows that if p € P}, selected such that the degree k polynomial
1 4+ Ap(A) vanishes with multiplicity 1 at 4;, 1 <i <[ — 1, and with multiplicity

(A + 2

k—1l+1at ")/2 then we have

Al_An)Z( k-1+1 )

(o = x )T Qe —x7) < (3532 (xo = x")" Qo — x*) (12)

Upon substituting the variable x with sy in equation (4.3), we derive

f(Sy) =5y"sTQsy +bTsy, (13)

The matrix Qss” = QP is analogous to the matrix sTQs, which is related to the
quadratic in y. As a consequence, the optimal preconditioner is P = Q~1, which achieves
convergence in a single iteration, as the eigenvalues of s”Qs are uniformly equal to 1.
Any matrix that approximates the inverse of the Hessian V2f(x*)™! is an effective
preconditioner for a generic nonlinear function f. For instance, to illustrate the selection of
P (see[8] [9], [10]).

Our aim in this paper in brief, accelerating the speed of the algorithms by the

Precondition Conjugate Gradient method and the Variable matrix.

. NEW PRECONDITION APPROACH

In this section, we will provide a conjugate gradient method to improve Maulana
methods, based on our previous exploration of the preconditional conjugate gradient and
the equations presented improve Maulana methods in the third chapter. To formulate it, we

use the equations that are listed below.
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ANEYT = ~HETES gy +HETO B
1 Gr+1" (9k+1 - ”“g;:h” Ik — gk)
pML =
“ Ik" (Grev1 — di)
QB = —HELS gt HET OB
lGreqll
o gkl = g B g gl = g g
o (1 = wlldill* + pllgell®
Where u = 0.6

A. Outline of New Precondition CG Algorithms (M1)

(14)

(15)

(16)

(17)

a. For xy € R™initial point of minimum ,0<e<1, 0<§ < % ,andd <o <1,

Hy = I (identity matrix).

s

Setdo = _Hogo,k =0.
. If|lgkll < €, then stop, otherwise continue to the next step.

c
d. Compute step size a; by Wolfe line search (4),(6).

e. Letxpy1 = xp + apdy , if ||gr41ll < &, then stop.
f. Calculate the new search directions PCG by:
AYE = —HELE gk HET OB
lGsel
Gr+1" (9k+1 - ﬁ]k+|1| ) gk)
M1 Yk

9r" (Gre+1 — di)
g. Setk =k + 1, and go to step 3.

B. Property (Gilbert and J. Nocedal, 1992)

Suppose that the general conjugate gradient method is used and that 0 < § < [|gkll < &

is achieved in it, then this method has property (2.1.1) if the constants b > 1 and p >

1 are found, for example, for every k,

1Bkl < b

1
<p=> <—
Isell < p => 1Bl < 5
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C. Assumption A.
Let f(x) have its lower bound defined on the set
S={xeR n,f(x)<f(x_0)}, (20)
where x_0 is the initial point.
D. Assumption B.

The objective function is continuously differentiated and the gradient of the
objective function is Lipchitz continuous in some neighborhood N of S, such that:
lg(x)-g(y)I<LIx-yl Vx,yEN. 21)

The sequence {x;} produced by NEW2 and NEW2 is included in S since
{f (x;)} is decreasing. Furthermore, from Assumption A, we can deduce that for any
constant B and any B and y; >, we have:

Ixll < B, llgCll < y1,Vx €S (22)

Assumption A's conditions are taken as given throughout the paper's subsequent
sections. Then, there is a handy lemma that was first presented in [4,10].

E. Theorem (2.1.3) ( Zoutendijk condition)

Suppose that Assumption (2.1.2) (2.1.3) holds. Any CG method of the form
(10), where dj, is a descent search direction and «a;, satisfies the (SWP) in (4),(6). Then
the following holds[11]:

N (i)’
VANTHE

From Theorem (2.1.3) and from (20)-(21) for the New Precondition CG

< 4o (23)

Algorithms with the Wolfe line search, we can easily obtain the following condition:

o]
lgell*
d.. 1%
L Tidyl

F. Theorem

< 4o (24)

Suppose that Assumption (2.1.2) (2.1.3) holds. Any CG technique of the forms
(2) and (3) with dj, constitutes a descent search direction, and a;, adheres to the Strong

Wolfe Conditions (SWP) in (4) and (6). If Any CG method of the
1
—— = o= lim inf||g, || = 0 25
; T = ©= lim infllgel (25)

[12]
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THE DESCENT PROPERTY OF A CG NEW METHOD (M1)
The descent property for our suggested conjugate gradient technique, designated as
PCG, must be shown below. Subsequently, we assert the adequate decline.

Starting by the direction of precondition(14)

Ay = —HE{ S5 g +HE O B dy (26)
Where
BFGS _ Hyyisk + Skyi Hy Vi Hiye \ Sesic
Vi Sk ViSk ) YiSk
HEE$® = (ax + by) 27)
gk+1T (gk+1 - ”gk+1” Ik — gk)
11(\41 _ Ir-1 (28)
k" (Gr+1 — di)
Multiply (26) by gi+1
d£+1gk+1 = _ngffsngkﬂ||2+HI§FGSBII\<“dI€gk+1 (29)
By using (IEL)
diGk+1 = diGrs1 — digr + di g
= di (8k+1 — 810 + digk = diyk + di gk < diyi (30)
Substituting (30) in (29)
dis18ke1 = —HEr s N g 12+ HEF O B dyic
T BFGS Gr+1" (gk+1 - ”ﬁg;h” Ik — gk) BFGS T
dir18kr1 = —Hir1 N Graall® + 9 Gees — d) Hy" " dg yx
dE+1gk+1 = —(ax + bk)”gk+1||2
2 _ g+l 7 T
lgr+al Ngsll Irk+19k — Yk+19k
¢ : HEF Sy
Ik 1 — Gr"dy
H, = HPFGS +ive definite always, so that
And by Powell condition
gl€+1gk = 0-2||‘9k+1||2
d£+1gk+1 = —(ay + bk)llgk+1||2
0.2 3
lginll? + 2208l 4 021,12
+ (ag-1 + bk—1)d£}’k

Ik Gre+1 — Gk dy

“BILANGAN - VOLUME. 3, NOMOR. 1 TAHUN 2025
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By using descent condition
ngdk <0
dE+1gk+1 < —(ax + bl g+ 1I?

gl gr+111* + 021 g1 1> + 0211 g N1l ggesa II?
lgpll

Ik Gr+1

(ap-1

+ by—1)diyx
d£+1gk+1 < —(ax + bk)||gk+1||2

<|ngll + 0.2[|gg+11l + 0.2]1 gl
Ngillgi” Grsa

di‘+1gk+1 < —(ax + bk)||gk+1||2

<1.2|| il + 0.2 grrnl
Igillgk Grsa

+ by_1)dgyk (€29)
d£+1gk+1 < —(ax + bk)||gk+1||2

<1-2”gk” + 0.2]| g1l
Igillgr Grsa

> | gr+1l1?(@r—y + br—1)dyi

> "gk+1”2(ak—1

> lgr+1l1? (k-1 + br—1)dfyi

121l gxll + 0.2]1gxql
”gk”nggk+1

diy18k1 < — ((ak + by) + ( ) (Ap-q + bk—l)d£Yk> | Gr+111?

T
diy18ke1 < —cllgr+1lI?

where

c>0

4. GLOBAL CONVERGENCE (M1)
For the same assumptions and preliminaries in previous chapters, we complete our
theoretics analysis.
A. Theorem(4.1):
Let the Property (2.1.2) (2.1.3) be fulfilled, and the CG algorithm in (8) and (13), since
dy.q is a sufficient descent direction, for every k = 0, then ||sk|| approaches zero, and
if the constants are found §, 8,7y, andy are in this form (0 < & < ||gkl| <8) (0 <y <
llgk+1ll < 7), and that the function f is a general function with the Lipschitz condition,
then
liminflgil = 0. (32)
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Proof:

The sequence of approximate solution generated by the precondition direction{d{ff‘l’vi =
~HEE g HHE OB 0

[ARE = —HEF g +HE SO 0

i1 Il = [HEEES [Ngie oIl + [HEFES || Bl el (33)

We take each part separately and deduce its value:

Hyyest + syt H tH SkSk
HEBFGS = (Hk_ kYkSk T SkVk k) n ((1 +}’k k}’k> kSk

y;fsk ygsk y;fsk
Hyyisk + skyi Hy Vi Hivie \ SkSi
Hy — T + 1+ 7 T
Vi Sk ViSk ) YiSk

[Hiclllysellllsiell + IISkIIIkaIIIHk|>+ (1+|ka|I|Hk|||ykII>IISkIIIISkII
1y llsk Iyielllisiell / Myiellsell

LS| =

|HEFSS| < (lHk| -

From Lipschitz condition we have

lyill < Llsy

Il lI? + Ulsel12 Hyl s 21l lisel?
HBFG5£<H - +({1+ (34)
v < | [l EAE TselZ ) sl

And simplistically (25)

1
HEESS < (1Ml = 21H]) + (7 + )
BrGS _ 1
Hen” =7 (35)
Or we can say since HEFSS +ive definite then directly we obtain the global convergence

requirements, if we continue by brevis context of the theorem

gk+1T <9k+1 - ”“gg;:h” Ir — gk)

o =
Ik (Gre+1 — di)
Il |2
- Ngenall? = g0 = ghaad
oo Ik Gk+1 — i dy
2 _ ||gk+1”2 _ T

|ﬁM1| _ | grrall N9kl Ik — Ik+19k

M1 =

Ik Gr+1 — Gk dy
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2
Hgeaaliz = 19ty oo gl
ko= gl g+l = Nlgrlllldill
) < el
T gkl gresll = Ngiclllldy
B < — 0
Oy — 0 |ldgll
|BA] < —LS_
=08 (lldell = 7)
¥
Ml<_—  =FE 36

Substituting the (35) and(36) in(33)

1
lldicsall = 77 + Eqlldill

1
”dk+1” = 7]7 + E1||dk||

Then we get
© (grdi)?
1<y WS
k=0 lldill?
o) 4 0 1 Td 2
Z ”ngZSE _z(gk kg <o
k=0”dk” k=0C ”dk”
Then

1lim inf||gy|| = 0.

5. Outline of New Precondition CG Algorithms (M2)

1. For x, € R™ initial point of minimum ,0<e<1, 0<4§ < % ,andd <o <1,

H, = I (identity matrix).

2. setdy =—Hygo,k=0.
3. If|lgkll < &, then stop, otherwise continue to the next step.
4. Compute step size a; by Wolfe line search (4), (6).
5. Letxpy1 = xp + apdy , if ||gr+1]l < €, then stop.
6. Calculate the new search directions PCG by:
AYE = —HEEE g HHEF OB,
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 lgeal? —% 191" Gkl = 1gsa" gl
.Bk =

A =wlldill* + ullgell®

7. Increment k by 1, and go to step 3.
6. The Descent Property of a CG New Method(M2)
The descent property for our proposed new conjugate gradient scheme must be

demonstrated below, referred to as PCG. In the next, we argue the sufficient descent.

Starting by the direction of precondition(16)

Ay = —HE{ ¥ e HHEFOS B di (37)
Where
BFGS _ HiyiSk + Sk¥i Hi Vi HiVic | SkSk
Hk+1 - Hk - T + 1+ T T
Yk Sk YeSk ) Yk Sk
Ht s = (ay + by) (38)
gl - ety g0~ 1genm g

M2 ||9k+1 - gkl
= 39
k 04114 ]1% + 0619012 (39)

where u=0.6
Multiply (37) by 841
di8ier = —HET I Gian [P +HE B2 dl e (40)
By using (IEL)

digx+1 = diGrsr — di i + di gr
= di(8r+1 — 81) + digx = dpyk + digx < dpyi 41)

Substituting (41) in (40)
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dE+1gk+1 = —Hfffsllgkﬂ||2+H5F“311\<“d£yk
dE+1gk+1 = —Hfffsllgkﬂllz
| Il
||.9k+1||2 - % |gk+1Tgk| - |gk+1T.gk|
+ Irk+1 — Gk HEFGSd”I("yk
0.4|d > + 0.6l g |2
dE+1gk+1 =—(ay + bk)”gk+1”2
| |
”9k+1”2 - M}ﬂ‘ﬁlgk+1Tgkl - |gk+1Tgk| FGS T
+ Hg" ™ di yx

0.4]|dy 1> + 0.6]l gk lI?

Hy = HFFSS +ive definite always, so that

dis18ke1 = — (@ + b llgrall®
gl - Ml g 700 - 19700
+ (@p—1 + b1 diyk

0.4/l gk 1> + 0.6]| g II?

By using descent condition

Ik dr <0
ds18re1 S —(ak + bl grea ll?
||3/k||||9k+1||2 - ”gk+1”|||.gk-i-|1Tgk| - ||yk|||gk+1Tgk|
Yk
+ Ay _
PRk (@1

+ bk—l)d£Yk

By Powell condition we get

dE+1gk+1 < —(ap + bk)||gk+1”2

Ulsillllgiesall® + 0.211gx4a11® + 020l grera ll?
Uisyel

g l?

+ (ag—1 + br_1)diyx

dE+1gk+1 < —(ag + bl G+ lI?

(l”Sk” + 0.2/l gge+ Il + 0.21]|s |l
Uls Il gilI?

+ b—1)diy (42)

) ||gk+1”2(ak—1
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IA

—(ak + bl gr+11I”
(1-2l||5k” + 0.2l gge+4 ll

T
dyt18k+1

s lTgll? ) it (@rn + b d Ry

L21[sgl + 0.2[[gg44l
Ulsi Il g lI?

dE+1gk+1 = - ((ak + by) — ( > (ag—1 + bx_1) d £Yk> ||gk+1”2

IA

T
dicy18k+1 _C”gk+1”2

where

c>0.

7. Global convergence(M2)
For the same assumptions and preliminaries in previous chapters, we complete our
theoretics analysis.
Theorem:
Let the Property (2.1.2) (2.1.3)be fulfilled, and the CG algorithm in (8) and (16), since
dy41 is a sufficient descent direction, for every k > 0, then ||sy|| approaches zero, and if
the constants are found §,§,y,andy are in this form (0 <8 < |lggll <8) (0<y <
llgk+11l < 7), and that the function f is a general function with the Lipschitz condition,
then

liminfllg, || = 0. (43)

Proof:

The sequence of approximate solution generated by the precondition direc‘[ion{d]lff‘llvi =
—HZ{ T g HHE O BR dic)

ARE" = —HEES g +HES B

i1 Il = [HEETS [Ngice oIl + [HETES || B[l el (44)

We take each part separately and deduce its value:

Hyyist + seyiH TH SkSk
HEFGS = (Hk_ kVkSk T SkYk k) n ((1 +yk kyk> kSk

y;fsk y;?sk YJZSk
BFGS| _ Hiyisk + Sy Hy vi Hivi \ Sksi
|Hk+1 - Hk - T + 1 + T T
Vi Sk YiSk ) Yk Sk
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BFGS [Hicl v Il * [Isill + il * v |l [Hyl
|[HEESS| < | IHyl —
i sl

H S Ny
4 <1+||yk||| kIIkaH)II il skl
lyellllsell /] Nyrllllskll

From Lipschitz condition we have

Iyl < Ulsell

[HylUlselI? + Uls |1 Hyl
gt < (g - P

I?]|s. |I?|H K
N <1+ II'sl |2 k|> | k||2
Ul Ul

And simplistically (43)

1
HEESS < (Il = 21Hl) + (7 + 1]

1
HEEES <5 (45)

F

Or we can say since HEF%S +ive definite then directly we obtain the global convergence

requirements, if we continut by brevise context of the theorem

||9k+1||2 - %L%HTQM - |gk+1Tgk|
M2 _ Gk+1 — Gk
k (1 — wldill? + ullgelI?

where u=0.6

gl - ety g1~ lgenam g
M2 _ Jik+1 — Gk
§ 0.4ld, || + 0.6]lgx |12

Hgieaal? = 0ty gill = Hgieall * NG
|B’]€\/[2| < ||gk+1 gk”

0.4([d]I? + 0.6l gy |I?
Il g+ 1> = Ngrea P Igicll = Nyellllgesall * 1l gl

[yl
| M2| <
P gl
1BM12| < 1yl gres 11?2 = NGraa 1PN gicll = Nyicllll gaes 11l * Nl gicl
A Iyl gl

Ulsill * g+ ll® = lgr+al21lgicll = Ulsi Nl gr+2 1l gl

| le S
P Usellgel?
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Let |Iskll = D

— ___ _ _2_
ey < DT = 2) 70
ID§ 2

Substituting the (39) and(38) in(37)

=K, (46)

1
lldi+all =77 + Ezlldill

1
”dk+1” = 7]7 + E2||dk||

Then we get
© (grdi)?
1<y WS
k=0 lldill?
o) 4 0 1 Td 2
Z ”ngZSE _2(gk kz <o
k=0”dk” k=0C ”dk”
then

Jim {inf [|lg[l} = 0

8. NUMERICAL EXAMPLES

In this paper, we test and compare the new algorithm Maulanal (M1) and Maulana2 (M2),
with legacy algorithm BFGS, on unconstrained problems. We apply this to problems with
dimensions 100 and 1000. We execute all computations on an HP laptop, outfitted with the
Winl0 operating system, 4 GB of RAM, and a Core i7, utilizing the Fortran program. We
then utilize MATLAB programming to compare the results in the form of curves the
Algorithms are based on the number of iterations (NOI), the number of function
evaluations(NOFG), and(TIME). Experimental results and discussion are as follows:

In Table (7.1) we compare (BFGS70 Full VM) with both (Maulanal with BFGS and
Maulana2 with BFGS) methods. Total number of occurrences NOI, total job evaluations

NOFG, and total TIME to solve 40 test problems.
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Table(7.1). Comparison between (Maulanalwith BFGS) against (Maulana2 with BFGS) PCG-
Algorithms

Table(7.2) Percentage performance of (Maulanalwith BFGS) against (Maulana2 with BFGS)

Test Problems BFGS70 Full VM- Maulanalwith BFGS Maulana2with BFGS
algorithm NOI/NOFG/TIME BNOI/NOFG/TIME

1- Trigonometric 102/198/0.03 86/173/0.18 85/164/0.02
2- Extended Rosenbrock 157/364/0.01 157/364/0.04 126/289/0.03
(CUTE)
3- Extended White & Holst 162/363/0.01 162/363/ 0.04 133/299/0.03
4- Extended Beale 50/102/0.01 48 /98/ 0.01 47/104/0.01
5- Raydan 2 12/36/0.00 12/36/0.01 12/36/0.02
6- Extended Tridiagonal 1 42/93/0.00 37/83/0.01 41/89/0.00
7- Extended Three Expo 306/8089/1.29 68/529/0.46 68/529/0.43
Terms
8- Generalized Tridiagonal 2 198/310/0.01 175/278/0.05 179/292/0.05
9- Diagonal 4 16/40/0.00 16/40/0.01 16/40/0.00
10- Diagonal 5 12/36/0.02 11/34/0.02 11/34/0.03
11- Extended Himmelblau 72/124/0.00 66/115/0.02 66/115/0.01
12- Extended PSC1 25/63/0.00 23/58/0.03 23/58/0.03
13- Extended BD1 252/402/0.01 220/354/0.08 89/174/0.03
14- Extended Hiebert 324/752/0.02 324/752/0.08 273/676/0.08
15- Extended EP1 2/16/0.00 1/14/0.00 1/14/0.00
16- Extended Tridiagonal 2 143/234/0.00 113/183/0.03 114/177/0.04
17- ARROWHEAD (CUTE) 41/318/0.02 24/57/0.01 21/67/0.01
18- NONDIA (CUTE) 44/93/0.02 36/77/0.01 36/76/0.00
19- DQDRTIC (CUTE) 20/52/0.00 20/ 52/0.01 20/52/0.00
20- DIXMAANA (CUTE) 24/56/0.02 21/50/0.02 20/48/0.01
21- DIXMAANB (CUTE) 39/75/0.01 36/69/0.02 36/69/0.02
22- DIXMAANC (CUTE) 51/99/0.00 48/93/0.02 48/93/0.03
23- Broyden Tridiagonal 144/245/0.02 125/214/0.03 126/242/0.04
24- Tridiagonal Perturbed 53/153/0.00 53/153/0.02 53/153/0.02
Quadratic
25- LIARWHD (CUTE) 77/172/0.00 71/159/0.02 65/145/0.03
26- DIAGONAL 6 12/36/0.00 12/36/0.01 12/36/0.01
27- DENSCHNA (CUTE) 34/74/0.00 33/72/0.02 33/72/0.02
28- DENSCHNC (CUTE) 46/96/0.02 46/96/0.04 43/94/0.04
29- DENSCHNB (CUTE) 24/60/0.00 24/60/0.01 20/52/0.01
30- DENSCHNF (CUTE) 80/148/0.02 76/142/0.03 84/157/0.03
31- Extended Block-Diagonal 40/86/0.01 37/81/0.03 34/75/0.03
BD2
32- Generalized quartic GQ1 25/70/0.00 23/66/0.01 23/66/0.01
33- DIAGONAL 7 11/42/0.00 11/42/0.02 11/42/0.01
34- Full Hessian 8/28/0.00 8/28/0.01 8/28/0.02
35- SINCOS 25/63/0.02 23/58/0.03 23/58/0.03
36- Generalized quartic GQ2 131/215/0.01 115/188/0.03 116/189/0.04
37- ARGLINB (CUTE) 0/12/0.00 0/12/0.00 0/12/0.00
38- FLETCHCR (CUTE) 97/209/0.02 88/191/0.03 93/197/0.03
39- HIMMELBG (CUTE) 32/44/0.00 28/40/0.01 28/40/0.01
40- HIMMELBH (CUTE) 24/56/0.00 24/56/0.00 24/56/0.01
Total 2.957/13.724/1.6 2.501/5.566/1.51 2.261/5.209/1.27
Total Work= 18.281 9.577 8.74
NOI+NOFG+TIME
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algorithms

TOOLS | BFGS Maulanalwith Maulana2with
BFGS BFGS

NOI 100% 84.6% 76.5%

NOFG 100% 40.6% 38%

TIME 100% 94.4% 79.4%

Table(7.3) No. of best NOFG test problems

No. of best No. of best No. of equal
NOFG NOFG NOFG
Tools
BFGS Maulanal In both
with BFGS
NOI 0 26 14
NOFG 0 26 14
TIME 30 3 7

Table(7.4) No. of best NOFG test problems

No. of best No. of best No. of equal
NOFG NOFG NOFG
Tools
BFGS Maulana2 In both
with BFGS
NOI 1 30 9
NOFG 2 29 9
TIME 29 5 6

Tables(7.1-7.4) show that compared to the baseline BFGS70 Full VM-algorithm, the (PCG-
Maulanalwith BFGS) algorithm improves upon it by a factor of (84.6%,40.6%, and 94.4%)
in terms of NOI, NOFG, and TIME. Comparing the (PCG-Maulana2with BFGS) algorithm
improves upon it by a factor of (76.5%, 38%, 79.4%) in terms of NOI, NOFG, and CPU, as
shown in Table(6.3-6.4), reveals that the (PCG -Maulanaland PCG -Maulana2) algorithm
achieves the strongest results in NOI, NOFG, and TIME under the accelerated Wolfe-Powell
line search, demonstrating that the (PCG -Maulanaland PCG -Maulana2) algorithm is
significantly more effective than the (BFGS70 Full VM-algorithm) CG-algorithm. The (PCG

-Maulanaland PCG -Maulana2) algorithm achieves its best performance by making full use

of all available resources (including NOI, NOFG, and TIME.
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Rate of convergence based on NOF
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Figure(7.1): Profile of performance (BFGS against Maulanal with BFGS) relative to the NOI
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Figure(7.2): Profile of performance (BFGS against Maulanal with BFGS) relative to the NOF
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Figure(7.3): Profile of performance (BFGS against Maulanal with BFGS) relative to the TIME

Tables ((7.1)-(7.4))demonstrate that the combinations of (Maulanal and Maulana2 with
BFGS), exhibit significantly greater efficiency compared to the individual method ( BFGS).
Our numerical analysis reflects the most recent findings. The technological mechanism in this
context is noteworthy. Figures (7.1) through (7.3) illustrate the performance profiles of our
approach in comparison to other methods. The data indicates that PCG The process
demonstrates superior performance compared to identical iterative methods. Assessment of
employment and duration. Based on the analysis of figures (7.1) - (7.3), we determined that

the new algorithms outperform the algorithm used for comparison in our study.

9. CONCLUSION

In conclusion, this study introduces a novel and enhanced Preconditioned
Conjugate Gradient (PCG) algorithm grounded in Dai and Liao's procedure, aiming to
improve the efficiency and robustness of classical conjugate gradient methods, including
Maulana's approach. By satisfying the coupling and sufficient descent conditions, the
proposed algorithm demonstrates significant advancements in addressing large-scale
unconstrained optimization problems. The integration of a modified quasi-Newton BFGS
preconditioner and an accelerated Wolfe-Powell line search for step size calculation

further enhances its performance. Theoretical analysis confirms the global convergence of
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the algorithm under specific conditions, highlighting its potential for practical optimization
tasks. Future work may explore its application in diverse problem domains and further

refine its preconditioning strategies.
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