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Abstract: In this paper, we study a new and improved preconditioned conjugate gradient (PCG) algorithm 
based on Dai and Liao's procedure to enhance the CG algorithm of (Maulana). The new PCG algorithm 
satisfies the coupling condition and the sufficient descent condition. This work proposes improved conjugate 
gradient methods to enhance the efficiency and robustness of classical conjugate gradient methods. The study 
changes the diagonal of the inverse Hessian approximation to quasi-Newton Broyden-Fletcher-Goldfarb-Shano 
(BFGS) updating to make a preconditioner for nonlinear conjugate gradient (NCG) methods used to solve 
large-scale optimization problems with no constraints. We will calculate the step size of this two-term algorithm 
by accelerating the Wolfe-Powell line searching technique. The proposed new PCG algorithms have proven 
their global convergence in certain specific conditions reported in this paper. 
 
Keywords: Preconditioned Conjugate Gradient Algorithms, Unconstrained Optimization, Numerical 
Optimization Techniques.  
 
1. INTRODUCTION. 

We examine the subsequent unconstrained optimization issue.[1]: 

𝑚𝑖𝑛𝑓ሺ𝑥ሻ,                                                                                                 و    ሺ1ሻ  

where 𝑓: 𝑅 → 𝑅 The function is continuously differentiable, and its gradient is 

accessible. We want to develop an approach for addressing large-scale problems when the 

Hessian of f is either unavailable or necessitates significant storage and processing 

resources, utilizing iterative techniques of the kind [2]: 

𝑥ାଵ ൌ 𝑥  𝛼𝑑                                                                                                 ሺ2ሻ 

x୩ is the current iteration point and α୩ is the step length being computed. The 

search direction d୩ is determined by conducting a line search[3]: 

𝑑ାଵ ൌ ൜
െ𝑔ାଵ,                              𝑖𝑓 𝑘 ൌ 0
െ𝑔ାଵ  𝛽𝑑                 𝑖𝑓 𝑘  1                                                              

(3) 

 The procedure employs the conjugate gradient direction, whereby the notable 

parameter 𝛽 is derived by equating the conjugate gradient direction with that of the 

Newton method [2], [3]. 

Any methodology of gradient has to update the point by the line search used. The 

Wolfe-Powell (WWP) customary search terms square measure usually employed 
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in CG ways. The search terms within the Weak Wolfe-Powell (WWP) line square 

measure as follows: 

𝑓ሺ𝑥ାଵሻ െ 𝑓ሺ𝑥ሻ  𝛿𝛼𝑔
்𝑑 ሺ4ሻ 

𝑔ାଵ
் 𝑑  𝜎𝑔

்𝑑 ሺ5ሻ 

By this condition, 𝑑 is a descent search direction such that  0൏ 𝛿 ൏ 𝜎 ൏ 1. 

The Strong Wolfe-Powell (SWP) conditions defined in (4) and satisfies: 

|𝑔ାଵ
் 𝑑|  𝜎𝑔

்𝑑 ሺ6ሻ

As a generalization of Strong Wolfe conditions, the absolute value opens in (6) 

with two disparities of inequality so that: 

െ𝜎𝑔
்𝑑  𝑔ାଵ

் 𝑑  𝜎𝑔
்𝑑   

Moreover, from all of these previous conditions we obtain the characteristic of 

sufficient descent, namely: 

ሺ7ሻ 𝑔
்𝑑  െ𝑐‖𝑔‖ଶ 

as long as c > 0 and is a positive number. 

The Preconditioned Conjugate Gradient (PCG) technique is an iterative 

methodology formulated to resolve extensive sparse systems of linear equations 

represented as Ax=b, A represent a symmetric positive-definite matrix. This approach is 

an augmentation of the Conjugate Gradient (CG) technique, improved by the application 

of a preconditioner to expedite convergence[4], [5]. 

An invertible matrix 𝚜 is selected to accelerate convergence, and the concept of 

preconditioning is to adjust the variables x = 𝚜y. This iteration is obtained by first writing 

the conjugate gradient algorithm in the converted variable y and then translating it back to 

the x variable[6]: 

𝑥ାଵ ൌ 𝑥  𝛼𝑑                       

𝑑ାଵ ൌ െ𝐻ାଵ𝑔ାଵ  𝐻𝛽𝑑  

(

8) 

Where 𝑝 ൌ 𝚜𝚜். The update parameter 𝛽
∗ is equivalent to 𝛽 (conjugacy 

parameter) except that the vectors 𝑔 and 𝑑 are replaced by 𝚜்𝑔 and 𝚜ିଵ𝑔 

respectively. As illustrations, we have for example 𝛽
ிோ and 𝛽

ோ 

𝛽
∗ிோ ൌ

௭ೖశభ
 ೖశభ

ೖ
ೖ

ൌ
ೖశభ

 ுೖೖశభ

ೖ
ೖ

,    𝛽
∗ோ ൌ

ೖశభ
 ௬ೖ

ೖ
ுೖೖ

                                           (9) 

The preconditioned residual at iteration 𝑘  1, computed as 𝑧ାଵ ൌ 𝑆ିଵ𝑔ାଵ. We 

examine the convergence to attain a more profound comprehension of the effects of 
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preconditioning. The velocity of the center of gravity is contingent upon the eigenvalues 

of the Hessian matrix. Assume that f is a quadratic function: 

𝑓ሺ𝑥ሻ ൌ ଵ

ଶ
𝑥்𝑄𝑥  𝑏்𝑥,                                                                                     (10) 

Let Q be a symmetric matrix characterized by its eigenvalues 𝜆ଵ  𝜆ଶ  ⋯  𝜆 

all 𝜆  0, 𝑖 ൌ 1,2,3, … , 𝑛. The error in the k-th conjugate gradient iterate, when 

employing an exact line search, adheres to the subsequent bound[7] 

ሺ𝑥 െ 𝑥∗ሻ்𝑄ሺ𝑥 െ 𝑥∗ሻ  min
∈ఘೖషభ

max
ଵஸஸ

൫1  𝜆𝑝ሺ𝜆ሻ൯
ଶ

ሺ𝑥 െ 𝑥∗ሻ்𝑄ሺ𝑥 െ 𝑥∗ሻ     ሺ11ሻ 

𝑃 represents the collection of polynomials of degree 𝑘. For each integer 𝑙 ∈ ሾ1, 𝑘ሿ, 

it follows that if 𝑝 ∈ 𝑃 selected such that the degree k polynomial 

1  𝜆𝑝ሺ𝜆ሻ vanishes with multiplicity 1 at 𝜆పሶ, 1  𝑖  𝑙 െ 1, and with multiplicity 

𝑘 െ 𝑙  1 at 
ሺ𝜆  𝜆ሻ

2ൗ   then we have 

ሺ𝑥 െ 𝑥∗ሻ்𝑄ሺ𝑥 െ 𝑥∗ሻ  ቀ
ఒିఒ

ఒାఒ
ቁ

ଶሺ ିାଵ ሻ
ሺ𝑥 െ 𝑥∗ሻ்𝑄ሺ𝑥 െ 𝑥∗ሻ                   (12) 

Upon substituting the variable x with sy in equation (4.3), we derive 

𝑓ሺ𝑆𝑦ሻ ൌ ଵ

ଶ
𝑦்𝚜்𝑄𝚜𝑦  𝑏்𝚜𝑦,                                                                             (13) 

The matrix 𝑄𝚜𝚜் ൌ 𝑄𝑃 is analogous to the matrix 𝚜்𝑄𝚜, which is related to the 

quadratic in y. As a consequence, the optimal preconditioner is 𝑃 ൌ 𝑄ିଵ, which achieves 

convergence in a single iteration, as the eigenvalues of 𝚜்𝑄𝚜 are uniformly equal to 1. 

Any matrix that approximates the inverse of the Hessian 𝛻ଶ𝑓ሺ𝑥∗ሻିଵ is an effective 

preconditioner for a generic nonlinear function f. For instance, to illustrate the selection of 

P (see[8] [9], [10]).   

Our aim in this paper in brief, accelerating the speed of the algorithms by the 

Precondition Conjugate Gradient method and the Variable matrix. 

 

2. NEW PRECONDITION APPROACH 

In this section, we will provide a conjugate gradient method to improve Maulana 

methods, based on our previous exploration of the preconditional conjugate gradient and 

the equations presented improve Maulana methods in the third chapter. To formulate it, we 

use the equations that are listed below. 
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𝑑ାଵ
ோௐ ൌ െ𝐻ାଵ

ிீௌ𝑔ାଵ𝐻
ிீௌ𝛽

ெଵ𝑑                                                                 (14) 

 

𝛽
ெଵ ൌ

𝑔ାଵ
் ൬𝑔ାଵ െ

‖𝑔ାଵ‖
‖𝑔‖ 𝑔 െ 𝑔൰

𝑔
்ሺ𝑔ାଵ െ 𝑑ሻ

                                                                    ሺ15ሻ 

 

𝑑ାଵ
ோௐ ൌ െ𝐻ାଵ

ிீௌ𝑔ାଵ𝐻
ிீௌ𝛽

ெଶ𝑑                                                                           ሺ16ሻ 

 

𝛽
ெଶ ൌ

‖𝑔ାଵ‖ଶ െ
‖𝑔ାଵ‖

‖𝑔ାଵ െ 𝑔‖ |𝑔ାଵ
்𝑔| െ |𝑔ାଵ

்𝑔|

ሺ1 െ 𝜇ሻ‖𝑑‖ଶ  𝜇‖𝑔‖ଶ                                           ሺ17ሻ 

Where 𝜇 ൌ 0.6 

A. Outline of New Precondition CG Algorithms (𝑴𝟏) 

a.  For 𝑥 ∈ 𝑅 initial point of minimum  , 0 ൏ 𝜀 ൏ 1,   0 ൏ 𝛿 ൏ ଵ

ଶ
 , 𝑎𝑛𝑑 𝛿 ൏ 𝜎 ൏ 1,  

𝐻 ൌ 𝐼 ሺ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥ሻ. 

b. set 𝑑 ൌ െ𝐻𝑔 , 𝑘 ൌ 0 . 

c.  If ‖𝑔‖ ൏ 𝜀, then stop, otherwise continue to the next step. 

d. Compute step size 𝛼 by Wolfe line search (4),(6). 

e. Let 𝑥ାଵ ൌ 𝑥  𝛼𝑑 , if ‖𝑔ାଵ‖ ൏ 𝜀, then stop. 

f. Calculate the new search directions PCG by: 

𝑑ାଵ
ோௐ ൌ െ𝐻ାଵ

ிீௌ𝑔ାଵ𝐻
ிீௌ𝛽

ெଵ𝑑  

 

𝛽
ெଵ ൌ

𝑔ାଵ
் ൬𝑔ାଵ െ

‖𝑔ାଵ‖
‖𝑔‖ 𝑔 െ 𝑔൰

𝑔
்ሺ𝑔ାଵ െ 𝑑ሻ

 

g. Set 𝑘 ൌ 𝑘  1, and go to step 3. 

B. Property (Gilbert and J. Nocedal, 1992) 

Suppose that the general conjugate gradient method is used and that 0 ൏ δ  ‖𝑔‖  𝛿̅ 

is achieved in it, then this method has property (2.1.1) if the constants 𝑏  1  and 𝑝 

1  are found, for example, for every k, 

|𝛽|  𝑏                                                                                                                           ሺ18ሻ 

‖𝑠‖  𝑝 ൌ |𝛽| 
1

2𝑏
                                                                                             ሺ19ሻ 
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C. Assumption A. 

Let f(x) have its lower bound defined on the set 

 S={x∈R^n,f(x)≤f(x_0)},                                                                           (20) 

where x_0    is the initial point. 

D. Assumption B. 

The objective function is continuously differentiated and the gradient of the 

objective function is Lipchitz continuous in some neighborhood N of S, such that: 

‖g(x)-g(y)‖≤L‖x-y‖  ∀x,y∈N.                                                         (21) 

The sequence ሼ𝑥ሽ produced by NEW2 and NEW2 is included in S since 

ሼ𝑓ሺ𝑥ሻሽ is decreasing. Furthermore, from Assumption A, we can deduce that for any 

constant B and any  𝐵 and  𝛾ଵ , we have: 

‖𝑥‖  𝐵, ‖𝑔ሺ𝑥ሻ‖  𝛾ଵ, ∀𝑥 ∈ 𝑆                                                                         (22) 

Assumption A's conditions are taken as given throughout the paper's subsequent 

sections. Then, there is a handy lemma that was first presented in [4,10]. 

E. Theorem (2.1.3) ( Zoutendijk condition)  

Suppose that Assumption (2.1.2) (2.1.3) holds. Any CG method of the form 

(10), where 𝑑 is a descent search direction and 𝛼 satisfies the (SWP) in (4),(6). Then 

the following holds[11]: 


ሺ𝑔

்𝑑ሻଶ

‖𝑑‖ଶ

ஶ

ୀ

൏ ∞                                                                                                        ሺ23ሻ 

From Theorem (2.1.3) and from (20)-(21) for the New Precondition CG 

Algorithms with the Wolfe line search, we can easily obtain the following condition: 


‖𝑔‖ସ

‖𝑑‖ଶ

ஶ

ୀ

൏ ∞                                                                                                            ሺ24ሻ 

F. Theorem  

Suppose that Assumption (2.1.2) (2.1.3) holds. Any CG technique of the forms 

(2) and (3) with 𝑑 constitutes a descent search direction, and 𝛼 adheres to the Strong 

Wolfe Conditions (SWP) in (4) and (6). If Any CG method of the 


1

‖𝑑‖ଶ ൌ ∞ lim
୩→ஶ

inf‖𝑔‖ ൌ 0                                                                          
ஹ

ሺ25ሻ 

[12] 
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3. THE DESCENT PROPERTY OF A CG NEW METHOD ሺ𝐌𝟏ሻ 

The descent property for our suggested conjugate gradient technique, designated as 

PCG, must be shown below. Subsequently, we assert the adequate decline. 

Starting by the direction of precondition(14) 

d୩ାଵ
୧ ൌ െ𝐻ାଵ

ிீௌg୩ାଵ𝐻
ிீௌβ୩

ଵd୩                                                                        ሺ26ሻ 

Where  

𝐻ାଵ
ிீௌ ൌ ቆH୩ െ

H୩𝑦𝑠
்  𝑠𝑦

்𝐻

𝑦
்𝑠

ቇ  ൭ቆ1 
𝑦

்H୩𝑦

𝑦
்𝑠

ቇ
𝑠𝑠

்

𝑦
்𝑠

൱ 

𝐻ାଵ
ிீௌ ൌ ሺ𝑎  𝑏ሻ                                                                                                          ሺ27) 

𝛽
ெଵ ൌ

𝑔ାଵ
் ൬𝑔ାଵ െ

‖𝑔ାଵ‖
‖𝑔ିଵ‖ 𝑔 െ 𝑔൰

𝑔
்ሺ𝑔ାଵ െ 𝑑ሻ

                                                                   ሺ28ሻ 

Multiply (26) by g୩ାଵ 

d୩ାଵ
 g୩ାଵ ൌ െ𝐻ାଵ

ிீௌ‖𝑔ାଵ‖ଶ𝐻
ிீௌβ୩

ଵ𝑑
்g୩ାଵ                                                       ሺ29ሻ 

By using (IEL) 

𝑑
்𝑔ାଵ ൌ 𝑑

்𝑔ାଵ െ 𝑑
்𝑔  𝑑

்𝑔 

ൌ d୩
ሺg୩ାଵ െ g୩ሻ  d୩

g୩ ൌ d୩
y୩  d୩

g୩ ൏ d୩
y୩                                                  (30) 

Substituting (30) in (29) 

d୩ାଵ
 g୩ାଵ ൌ െ𝐻ାଵ

ிீௌ‖𝑔ାଵ‖ଶ𝐻
ிீௌβ୩

ଵ𝑑
்y୩  

d୩ାଵ
 g୩ାଵ ൌ െ𝐻ାଵ

ிீௌ‖𝑔ାଵ‖ଶ 
𝑔ାଵ

் ൬𝑔ାଵ െ
‖𝑔ାଵ‖

‖𝑔‖ 𝑔 െ 𝑔൰

𝑔
்ሺ𝑔ାଵ െ 𝑑ሻ

𝐻
ிீௌ𝑑

்y୩ 

d୩ାଵ
 g୩ାଵ ൌ െሺ𝑎  𝑏ሻ‖𝑔ାଵ‖ଶ

 ൮
‖𝑔ାଵ‖ଶ െ

‖𝑔ାଵ‖
‖𝑔‖ 𝑔ାଵ

் 𝑔 െ 𝑔ାଵ
் 𝑔

𝑔
்𝑔ାଵ െ 𝑔

்𝑑
൲ 𝐻

ிீௌ𝑑
்y୩ 

𝐻 ൌ 𝐻
ிீௌ 𝑖𝑣𝑒 definite always, so that 

And by Powell condition  

𝑔ାଵ
் 𝑔 ൌ 0.2‖𝑔ାଵ‖ଶ 

d୩ାଵ
 g୩ାଵ ൌ െሺ𝑎  𝑏ሻ‖𝑔ାଵ‖ଶ

 ൮
‖𝑔ାଵ‖ଶ 

0.2‖𝑔ାଵ‖ଷ

‖𝑔‖  0.2‖𝑔ାଵ‖ଶ

𝑔
்𝑔ାଵ െ 𝑔

்𝑑
൲ ሺ𝑎ିଵ  𝑏ିଵሻ𝑑

்y୩ 
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By using descent condition  

𝑔
்𝑑  0 

d୩ାଵ
 g୩ାଵ  െሺ𝑎  𝑏ሻ‖𝑔ାଵ‖ଶ

 ൮

‖𝑔‖‖𝑔ାଵ‖ଶ  0.2‖𝑔ାଵ‖ଷ  0.2‖𝑔‖‖𝑔ାଵ‖ଶ

‖𝑔‖
𝑔

்𝑔ାଵ
൲ ሺ𝑎ିଵ

 𝑏ିଵሻ𝑑
்y୩ 

d୩ାଵ
 g୩ାଵ  െሺ𝑎  𝑏ሻ‖𝑔ାଵ‖ଶ

 ቆ
‖𝑔‖  0.2‖𝑔ାଵ‖  0.2‖𝑔‖

‖𝑔‖𝑔
்𝑔ାଵ

ቇ ‖𝑔ାଵ‖ଶሺ𝑎ିଵ  𝑏ିଵሻ𝑑
்y୩ 

d୩ାଵ
 g୩ାଵ  െሺ𝑎  𝑏ሻ‖𝑔ାଵ‖ଶ

 ቆ
1.2‖𝑔‖  0.2‖𝑔ାଵ‖

‖𝑔‖𝑔
்𝑔ାଵ

ቇ ‖𝑔ାଵ‖ଶሺ𝑎ିଵ

 𝑏ିଵሻ𝑑
்y୩                        ሺ31ሻ 

d୩ାଵ
 g୩ାଵ  െሺ𝑎  𝑏ሻ‖𝑔ାଵ‖ଶ

 ቆ
1.2‖𝑔‖  0.2‖𝑔ାଵ‖

‖𝑔‖𝑔
்𝑔ାଵ

ቇ ‖𝑔ାଵ‖ଶሺ𝑎ିଵ  𝑏ିଵሻ𝑑
்y୩ 

d୩ାଵ
 g୩ାଵ  െ ൭ሺ𝑎  𝑏ሻ  ቆ

1.2‖𝑔‖  0.2‖𝑔ାଵ‖

‖𝑔‖𝑔
்𝑔ାଵ

ቇ ሺ𝑎ିଵ  𝑏ିଵሻ𝑑
்y୩൱ ‖𝑔ାଵ‖ଶ 

d୩ାଵ
 g୩ାଵ  െ𝑐‖𝑔ାଵ‖ଶ 

where 

𝑐  0 

 

4. GLOBAL CONVERGENCE ሺ𝐌𝟏ሻ  

For the same assumptions and preliminaries in previous chapters, we complete our 

theoretics analysis. 

A. Theorem(4.1): 

Let the Property (2.1.2) (2.1.3) be fulfilled, and the CG algorithm in (8) and (13), since 

d୩ାଵ is a sufficient descent direction, for every k  0, then ‖s୩‖ approaches zero, and 

if the constants are found δ, δത, γ, and�̅� are in this form (0 ൏ δ  ‖g୩‖  δതሻ ሺ0 ൏ γ 

‖g୩ାଵ‖  �̅�ሻ, and that the function f is a general function with the Lipschitz condition, 

then 

lim
୩→ஶ

inf‖g୩‖ ൌ 0.                                                                                                        ሺ32ሻ 
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Proof: 

The sequence of approximate solution generated by the precondition direction{d୩ାଵ
୧ ൌ

െ𝐻ାଵ
ிீௌg୩ାଵ𝐻

ிீௌβ୩
ଵd୩}  

หd୩ାଵ
୧ ൌ െ𝐻ାଵ

ிீௌg୩ାଵ𝐻
ிீௌβ୩

ଵd୩ห 

‖𝑑ାଵ‖ ൌ ห𝐻ାଵ
ிீௌห‖g୩ାଵ‖  ห𝐻

ிீௌหหβ୩
ଵห‖d୩‖                                                   ሺ33ሻ 

We take each part separately and deduce its value: 

𝐻ାଵ
ிீௌ ൌ ቆH୩ െ

H୩𝑦𝑠
்  𝑠𝑦

்𝐻

𝑦
்𝑠

ቇ  ൭ቆ1 
𝑦

்H୩𝑦

𝑦
்𝑠

ቇ
𝑠𝑠

்

𝑦
்𝑠

൱ 

ห𝐻ାଵ
ிீௌห ൌ อቆH୩ െ

H୩𝑦𝑠
்  𝑠𝑦

்𝐻

𝑦
்𝑠

ቇ  ൭ቆ1 
𝑦

்H୩𝑦

𝑦
்𝑠

ቇ
𝑠𝑠

்

𝑦
்𝑠

൱อ 

 

ห𝐻ାଵ
ிீௌห  ቆ|H୩| െ

|H୩|‖𝑦‖‖𝑠‖  ‖𝑠‖‖𝑦‖|H୩|
‖𝑦‖𝑠

ቇ  ൭ቆ1 
‖𝑦‖|H୩|‖𝑦‖

‖𝑦‖‖𝑠‖
ቇ

‖𝑠‖‖𝑠‖
‖𝑦‖‖𝑠‖

൱ 

From Lipschitz condition we have    

‖𝑦‖  𝑙‖𝑠‖ 

𝐻ାଵ
ிீௌ  ቆ|H୩| െ

|H୩|𝑙‖𝑠‖ଶ  𝑙‖𝑠‖ଶ|H୩|

𝑙‖𝑠‖ଶ ቇ  ൭ቆ1 
𝑙ଶ‖𝑠‖ଶ|H୩|

𝑙‖𝑠‖ଶ ቇ
‖𝑠‖ଶ

𝑙‖𝑠‖ଶ൱          ሺ34ሻ 

And simplistically (25) 

𝐻ାଵ
ிீௌ  ሺ|H୩| െ 2|H୩|ሻ  ൬

1
𝑙

 |H୩|൰ 

𝐻ାଵ
ிீௌ 

1
𝑙

                                                                                                                                     ሺ35ሻ 

Or we can say since 𝐻ାଵ
ிீௌ +ive definite then directly we obtain the global convergence 

requirements, if we continue by brevis context of the theorem 

𝛽
ெଵ ൌ

𝑔ାଵ
் ൬𝑔ାଵ െ

‖𝑔ାଵ‖
‖𝑔‖ 𝑔 െ 𝑔൰

𝑔
்ሺ𝑔ାଵ െ 𝑑ሻ

 

𝛽
ெଵ ൌ

‖𝑔ାଵ‖ଶ െ
‖𝑔ାଵ‖ଶ

‖𝑔‖ 𝑔 െ 𝑔ାଵ
் 𝑔

𝑔
்𝑔ାଵ െ 𝑔

்𝑑
 

|𝛽
ெଵ| ൌ ተ

‖𝑔ାଵ‖ଶ െ
‖𝑔ାଵ‖ଶ

‖𝑔‖ 𝑔 െ 𝑔ାଵ
் 𝑔

𝑔
்𝑔ାଵ െ 𝑔

்𝑑
ተ 
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|𝛽
ெଵ| 

‖𝑔ାଵ‖ଶ െ
‖𝑔ାଵ‖ଶ

‖𝑔‖ ‖𝑔‖ െ ‖𝑔ାଵ‖‖𝑔‖

‖𝑔‖‖𝑔ାଵ‖ െ ‖𝑔‖‖𝑑‖
 

|𝛽
ெଵ| 

െ‖𝑔ାଵ‖‖𝑔‖
‖𝑔‖‖𝑔ାଵ‖ െ ‖𝑔‖‖𝑑‖

 

|𝛽
ெଵ| 

െ�̅�𝛿 ഥ

𝛿 ഥ �̅� െ 𝛿 ഥ ‖𝑑‖
 

|𝛽
ெଵ| 

െ�̅�𝛿 ഥ

െ𝛿 ഥ ሺ‖𝑑‖ െ �̅�ሻ
 

|𝛽
ெଵ| 

�̅�
‖𝑑‖ െ �̅�

ൌ Eଵ                                                                                                     ሺ36ሻ 

Substituting the (35) and(36) in(33) 

‖𝑑ାଵ‖ ൌ
1
𝑙

�̅�  Eଵ‖d୩‖ 

‖𝑑ାଵ‖ ൌ
1
𝑙

�̅�  Eଵ‖d୩‖ 

Then we get 

0 ൏ 
ሺ𝑔

்𝑑ሻଶ

‖𝑑‖ଶ ൏ ∞
ஶ

ୀ
 


‖𝑔‖ସ

‖𝑑‖ଶ

ஶ

ୀ
 

1
𝑐ଶ

ሺ𝑔
்𝑑ሻଶ

‖𝑑‖ଶ

ஶ

ୀ
൏ ∞ 

Then 

 

lim
୩→ஶ

inf‖g୩‖ ൌ 0. 

 

5. Outline of New Precondition CG Algorithms (𝑴𝟐) 

1.  For 𝑥 ∈ 𝑅 initial point of minimum  , 0 ൏ 𝜀 ൏ 1,   0 ൏ 𝛿 ൏ ଵ

ଶ
 , 𝑎𝑛𝑑 𝛿 ൏ 𝜎 ൏ 1,  

𝐻 ൌ 𝐼 ሺ𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥ሻ. 

2. set 𝑑 ൌ െ𝐻𝑔 , 𝑘 ൌ 0 . 

3.  If ‖𝑔‖ ൏ 𝜀, then stop, otherwise continue to the next step. 

4. Compute step size 𝛼 by Wolfe line search (4), (6). 

5. Let 𝑥ାଵ ൌ 𝑥  𝛼𝑑 , if ‖𝑔ାଵ‖ ൏ 𝜀, then stop. 

6. Calculate the new search directions PCG by: 

𝑑ାଵ
ோௐ ൌ െ𝐻ାଵ

ிீௌ𝑔ାଵ𝐻
ிீௌ𝛽

ெଶ𝑑  
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𝛽
ெଶ ൌ

‖𝑔ାଵ‖ଶ െ
‖𝑔ାଵ‖

‖𝑔ାଵ െ 𝑔‖ |𝑔ାଵ
்𝑔| െ |𝑔ାଵ

்𝑔|

ሺ1 െ 𝜇ሻ‖𝑑‖ଶ  𝜇‖𝑔‖ଶ  

 

 

7. Increment k by 1, and go to step 3. 

6. The Descent Property of a CG New Method(𝐌𝟐) 

The descent property for our proposed new conjugate gradient scheme must be 

demonstrated below, referred to as 𝑃𝐶𝐺. In the next, we argue the sufficient descent.  

 

Starting by the direction of precondition(16) 

 

d୩ାଵ
୧ ൌ െ𝐻ାଵ

ிீௌg୩ାଵ𝐻
ிீௌβ୩

ଶd୩                                                                   ሺ37ሻ 

 

Where  

𝐻ାଵ
ிீௌ ൌ ቆH୩ െ

H୩𝑦𝑠
்  𝑠𝑦

்𝐻

𝑦
்𝑠

ቇ  ൭ቆ1 
𝑦

்H୩𝑦

𝑦
்𝑠

ቇ
𝑠𝑠

்

𝑦
்𝑠

൱ 

𝐻ାଵ
ிீௌ ൌ ሺ𝑎  𝑏ሻ                                                                                                     ሺ38) 

𝛽
ெଶ ൌ

‖𝑔ାଵ‖ଶ െ
‖𝑔ାଵ‖

‖𝑔ାଵ െ 𝑔‖ |𝑔ାଵ
்𝑔| െ |𝑔ାଵ

்𝑔|

0.4‖𝑑‖ଶ  0.6‖𝑔‖ଶ                                   ሺ39ሻ 

                   where  𝜇 =0.6  

 

Multiply (37) by g୩ାଵ 

 

d୩ାଵ
 g୩ାଵ ൌ െ𝐻ାଵ

ிீௌ‖𝑔ାଵ‖ଶ𝐻
ிீௌβ୩

ଶ𝑑
்g୩ାଵ                                                ሺ40ሻ 

 

By using (IEL) 

 

𝑑
்𝑔ାଵ ൌ 𝑑

்𝑔ାଵ െ 𝑑
்𝑔  𝑑

்𝑔 

ൌ d୩
ሺg୩ାଵ െ g୩ሻ  d୩

g୩ ൌ d୩
y୩  d୩

g୩ ൏ d୩
y୩                                           (41) 

 

Substituting (41) in (40) 
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d୩ାଵ
 g୩ାଵ ൌ െ𝐻ାଵ

ிீௌ‖𝑔ାଵ‖ଶ𝐻
ிீௌβ୩

ଵ𝑑
்y୩  

d୩ାଵ
 g୩ାଵ ൌ െ𝐻ାଵ

ிீௌ‖𝑔ାଵ‖ଶ


‖𝑔ାଵ‖ଶ െ

‖𝑔ାଵ‖
‖𝑔ାଵ െ 𝑔‖ |𝑔ାଵ

்𝑔| െ |𝑔ାଵ
்𝑔|

0.4‖𝑑‖ଶ  0.6‖𝑔‖ଶ 𝐻
ிீௌ𝑑

்y୩ 

d୩ାଵ
 g୩ାଵ ൌ െሺ𝑎  𝑏ሻ‖𝑔ାଵ‖ଶ

 ൮
‖𝑔ାଵ‖ଶ െ

‖𝑔ାଵ‖
‖𝑔ାଵ െ 𝑔‖ |𝑔ାଵ

்𝑔| െ |𝑔ାଵ
்𝑔|

0.4‖𝑑‖ଶ  0.6‖𝑔‖ଶ ൲ 𝐻
ிீௌ𝑑

்y୩ 

𝐻 ൌ 𝐻
ிீௌ 𝑖𝑣𝑒 definite always, so that 

 

d୩ାଵ
 g୩ାଵ ൌ െሺ𝑎  𝑏ሻ‖𝑔ାଵ‖ଶ


‖𝑔ାଵ‖ଶ െ

‖𝑔ାଵ‖
‖𝑦‖ |𝑔ାଵ

்𝑔| െ |𝑔ାଵ
்𝑔|

0.4‖𝑔‖ଶ  0.6‖𝑔‖ଶ ሺ𝑎ିଵ  𝑏ିଵሻ𝑑
்y୩ 

By using descent condition  

𝑔
்𝑑  0 

d୩ାଵ
 g୩ାଵ  െሺ𝑎  𝑏ሻ‖𝑔ାଵ‖ଶ



‖𝑦‖‖𝑔ାଵ‖ଶ െ ‖𝑔ାଵ‖|𝑔ାଵ
்𝑔| െ ‖𝑦‖|𝑔ାଵ

்𝑔|
‖𝑦‖

‖𝑔‖ଶ ሺ𝑎ିଵ

 𝑏ିଵሻ𝑑
்y୩ 

 

 

By Powell condition we get 

d୩ାଵ
 g୩ାଵ  െሺ𝑎  𝑏ሻ‖𝑔ାଵ‖ଶ



𝑙‖𝑠‖‖𝑔ାଵ‖ଶ  0.2‖𝑔ାଵ‖ଷ  0.2𝑙‖𝑠‖‖𝑔ାଵ‖ଶ

𝑙‖𝑠‖
‖𝑔‖ଶ ሺ𝑎ିଵ  𝑏ିଵሻ𝑑

்y୩ 

d୩ାଵ
 g୩ାଵ  െሺ𝑎  𝑏ሻ‖𝑔ାଵ‖ଶ

 ቆ
𝑙‖𝑠‖  0.2‖𝑔ାଵ‖  0.2𝑙‖𝑠‖

𝑙‖𝑠‖‖𝑔‖ଶ ቇ ‖𝑔ାଵ‖ଶሺ𝑎ିଵ

 𝑏ିଵሻ𝑑
்y୩          ሺ42ሻ 



Applying New Preconditioned Conjugated Gradient Algorithms to Unconstrained Optimization Problem 

 

 

71     BILANGAN - VOLUME. 3, NOMOR. 1 TAHUN 2025  
 
 
 

d୩ାଵ
 g୩ାଵ  െሺ𝑎  𝑏ሻ‖𝑔ାଵ‖ଶ

 ቆ
1.2𝑙‖𝑠‖  0.2‖𝑔ାଵ‖

𝑙‖𝑠‖‖𝑔‖ଶ ቇ ‖𝑔ାଵ‖ଶ ሺ𝑎ିଵ  𝑏 ିଵሻ 𝑑 
்y୩ 

d୩ାଵ
 g୩ାଵ ൌ െ ൭ሺ𝑎  𝑏ሻ െ ቆ

1.2𝑙‖𝑠‖  0.2‖𝑔ାଵ‖

𝑙‖𝑠‖‖𝑔‖ଶ ቇ ሺ𝑎ିଵ  𝑏ିଵሻ 𝑑 
்y୩൱ ‖𝑔ାଵ‖ଶ 

d୩ାଵ
 g୩ାଵ  െ𝑐‖𝑔ାଵ‖ଶ 

where 

𝑐  0. 

 

7. Global convergence(M2) 

For the same assumptions and preliminaries in previous chapters, we complete our 

theoretics analysis. 

Theorem: 

Let the Property (2.1.2) (2.1.3)be fulfilled, and the CG algorithm in (8) and (16), since 

d୩ାଵ is a sufficient descent direction, for every k  0, then ‖s୩‖ approaches zero, and if 

the constants are found δ, δത, γ, and�̅� are in this form (0 ൏ δ  ‖g୩‖  δതሻ ሺ0 ൏ γ 

‖g୩ାଵ‖  �̅�ሻ, and that the function f is a general function with the Lipschitz condition, 

then 

lim
୩→ஶ

inf‖g୩‖ ൌ 0.                                                                                      ሺ43ሻ 

 

Proof: 

The sequence of approximate solution generated by the precondition direction{d୩ାଵ
୧ ൌ

െ𝐻ାଵ
ிீௌg୩ାଵ𝐻

ிீௌβ୩
ଶd୩}  

หd୩ାଵ
୧ ൌ െ𝐻ାଵ

ிீௌg୩ାଵ𝐻
ிீௌβ୩

ଶd୩ห 

‖𝑑ାଵ‖ ൌ ห𝐻ାଵ
ிீௌห‖g୩ାଵ‖  ห𝐻

ிீௌหหβ୩
ଶห‖d୩‖                                                  ሺ44ሻ 

We take each part separately and deduce its value: 

𝐻ାଵ
ிீௌ ൌ ቆH୩ െ

H୩𝑦𝑠
்  𝑠𝑦

்𝐻

𝑦
்𝑠

ቇ  ൭ቆ1 
𝑦

்H୩𝑦

𝑦
்𝑠

ቇ
𝑠𝑠

்

𝑦
்𝑠

൱ 

ห𝐻ାଵ
ிீௌห ൌ อቆH୩ െ

H୩𝑦𝑠
்  𝑠𝑦

்𝐻

𝑦
்𝑠

ቇ  ൭ቆ1 
𝑦

்H୩𝑦

𝑦
்𝑠

ቇ
𝑠𝑠

்

𝑦
்𝑠

൱อ 
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ห𝐻ାଵ
ிீௌห  ቆ|H୩| െ

|H୩|‖𝑦‖ ∗ ‖𝑠‖  ‖𝑠‖ ∗ ‖𝑦‖|H୩|
‖𝑦‖‖𝑠‖

ቇ

 ൭ቆ1 
‖𝑦‖|H୩|‖𝑦‖

‖𝑦‖‖𝑠‖
ቇ

‖𝑠‖‖𝑠‖
‖𝑦‖‖𝑠‖

൱ 

From Lipschitz condition we have    

‖𝑦‖  𝑙‖𝑠‖ 

𝐻ାଵ
ிீௌ  ቆ|H୩| െ

|H୩|𝑙‖𝑠‖ଶ  𝑙‖𝑠‖ଶ|H୩|
𝑙‖𝑠‖ଶ ቇ

 ൭ቆ1 
𝑙ଶ‖𝑠‖ଶ|H୩|

𝑙‖𝑠‖ଶ ቇ
‖𝑠‖ଶ

𝑙‖𝑠‖ଶ൱                              

And simplistically (43) 

𝐻ାଵ
ிீௌ  ሺ|H୩| െ 2|H୩|ሻ  ൬

1
𝑙

 |H୩|൰ 

𝐻ାଵ
ிீௌ 

1
𝑙

                                                                                                                  ሺ45ሻ 

Or we can say since 𝐻ାଵ
ிீௌ +ive definite then directly we obtain the global convergence 

requirements, if we continut by brevise context of the theorem 

 

 

𝛽
ெଶ ൌ

‖𝑔ାଵ‖ଶ െ
‖𝑔ାଵ‖

‖𝑔ାଵ െ 𝑔‖ |𝑔ାଵ
்𝑔| െ |𝑔ାଵ

்𝑔|

ሺ1 െ 𝜇ሻ‖𝑑‖ଶ  𝜇‖𝑔‖ଶ                

                   where  𝜇 =0.6  

ተ𝛽
ெଶ ൌ

‖𝑔ାଵ‖ଶ െ
‖𝑔ାଵ‖

‖𝑔ାଵ െ 𝑔‖ |𝑔ାଵ
்𝑔| െ |𝑔ାଵ

்𝑔|

0.4‖𝑑‖ଶ  0.6‖𝑔‖ଶ ተ 

|𝛽
ெଶ| 

‖𝑔ାଵ‖ଶ െ
‖𝑔ାଵ‖

‖𝑔ାଵ െ 𝑔‖ ‖𝑔ାଵ‖ ∗ ‖𝑔‖ െ ‖𝑔ାଵ‖ ∗ ‖𝑔‖

0.4‖𝑑‖ଶ  0.6‖𝑔‖ଶ  

|𝛽
ெଶ| 

‖𝑦‖‖𝑔ାଵ‖ଶ െ ‖𝑔ାଵ‖ଶ‖𝑔‖ െ ‖𝑦‖‖𝑔ାଵ‖ ∗ ‖𝑔‖
‖𝑦‖

‖𝑔‖ଶ  

|𝛽
ெଶ| 

‖𝑦‖‖𝑔ାଵ‖ଶ െ ‖𝑔ାଵ‖ଶ‖𝑔‖ െ ‖𝑦‖‖𝑔ାଵ‖ ∗ ‖𝑔‖
‖𝑦‖‖𝑔‖ଶ  

|𝛽
ெଶ| 

𝑙‖𝑠‖ ∗ ‖𝑔ାଵ‖ଶ െ ‖𝑔ାଵ‖ଶ‖𝑔‖ െ 𝑙‖𝑠‖‖𝑔ାଵ‖‖𝑔‖
𝑙‖𝑠‖‖𝑔‖ଶ  
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Let ‖s୩‖ ൌ 𝐷 

|𝛽
ெଶ| 

𝑙𝐷�̅�൫�̅� െ 𝛿ഥ ൯ െ �̅�ଶ𝛿 ഥ

𝑙𝐷𝛿 ഥ ଶ
ൌ 𝐸ଶ                                                                                 ሺ46ሻ 

Substituting the (39) and(38) in(37) 

‖𝑑ାଵ‖ ൌ
1
𝑙

�̅�  Eଶ‖d୩‖ 

‖𝑑ାଵ‖ ൌ
1
𝑙

�̅�  Eଶ‖d୩‖ 

Then we get 

0 ൏ 
ሺ𝑔

்𝑑ሻଶ

‖𝑑‖ଶ ൏ ∞
ஶ

ୀ
 


‖𝑔‖ସ

‖𝑑‖ଶ

ஶ

ୀ
 

1
𝑐ଶ

ሺ𝑔
்𝑑ሻଶ

‖𝑑‖ଶ

ஶ

ୀ
൏ ∞ 

then 

lim
୩→ஶ

ሼinf  ‖g୩‖ሽ ൌ 0 

 

 

 

8. NUMERICAL EXAMPLES 

In this paper, we test and compare the new algorithm Maulana1 (M1) and Maulana2 (M2), 

with legacy algorithm BFGS, on unconstrained problems. We apply this to problems with 

dimensions 100 and 1000. We execute all computations on an HP laptop, outfitted with the 

Win10 operating system, 4 GB of RAM, and a Core i7, utilizing the Fortran program. We 

then utilize MATLAB programming to compare the results in the form of curves the 

Algorithms are based on the number of iterations (NOI), the number of function 

evaluations(NOFG), and(TIME). Experimental results and discussion are as follows: 

In Table (7.1) we compare (BFGS70 Full VM) with both (Maulana1 with BFGS and 

Maulana2 with BFGS) methods. Total number of occurrences NOI, total job evaluations 

NOFG, and total TIME to solve 40 test problems. 
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Table(7.1). Comparison between (Maulana1with BFGS) against (Maulana2 with BFGS) PCG-

Algorithms 

 

Table(7.2) Percentage performance of (Maulana1with BFGS) against (Maulana2 with BFGS)  

 

 

Test Problems BFGS70 Full VM-
algorithm 

Maulana1with BFGS 
NOI/NOFG/TIME 

Maulana2with BFGS 
BNOI/NOFG/TIME 

1-  Trigonometric 102/198/0.03 86/173/0.18 85/164/0.02 
2-  Extended Rosenbrock  
(CUTE) 

157/364/0.01 157/364/0.04 126/289/0.03 

3-  Extended White & Holst 162/363/0.01 162/363/ 0.04 133/299/0.03 
4-  Extended Beale 50/102/0.01 48 /98/ 0.01 47/104/0.01 
5-  Raydan 2 12/36/0.00 12/ 36/0.01 12/36/0.02 
6-  Extended Tridiagonal 1 42/93/0.00 37/83/0.01 41/89/0.00 
7-  Extended Three Expo 
Terms 

306/8089/1.29 68/529/0.46 68/529/0.43 

8-  Generalized Tridiagonal 2 198/310/0.01 175/278/0.05 179/292/0.05 
9-  Diagonal 4 16/40/0.00 16/40/0.01 16/40/0.00 
10- Diagonal 5 12/36/0.02 11/34/0.02 11/34/0.03 
11- Extended Himmelblau 72/124/0.00 66/115/0.02 66/115/0.01 
12- Extended PSC1 25/63/0.00 23/58/0.03 23/58/0.03 
13- Extended BD1 252/402/0.01 220/354/0.08 89/174/0.03 
14- Extended Hiebert 324/752/0.02 324/752/0.08 273/676/0.08 
15- Extended EP1 2/16/0.00 1/14/ 0.00 1/14/0.00 
16- Extended Tridiagonal  2 143/234/0.00 113/183/0.03 114/177/0.04 
17- ARROWHEAD (CUTE) 41/318/0.02 24/57/0.01 21/67/0.01 
18- NONDIA (CUTE) 44/93/0.02 36/77/0.01 36/76/0.00 
19- DQDRTIC (CUTE) 20/52/0.00 20/ 52/0.01 20/52/0.00 
20- DIXMAANA (CUTE) 24/56/0.02 21/50/0.02 20/48/0.01 
21- DIXMAANB (CUTE) 39/75/0.01 36/69/0.02 36/69/0.02 
22- DIXMAANC (CUTE) 51/99/0.00 48/93/0.02 48/93/0.03 
23- Broyden Tridiagonal 144/245/0.02 125/214/0.03 126/242/0.04 
24- Tridiagonal Perturbed 
Quadratic 

53/153/0.00 53/153/0.02 53/153/0.02 

25- LIARWHD (CUTE) 77/172/0.00 71/159/0.02 65/145/0.03 
26- DIAGONAL 6 12/36/0.00 12/36/0.01 12/36/0.01 
27- DENSCHNA (CUTE) 34/74/0.00 33/72/0.02 33/72/0.02 
28- DENSCHNC  (CUTE) 46/96/0.02 46/96/0.04 43/94/0.04 
29- DENSCHNB (CUTE) 24/60/0.00 24/60/0.01 20/52/0.01 
30- DENSCHNF (CUTE) 80/148/0.02 76/142/0.03 84/157/0.03 
31- Extended Block-Diagonal 
BD2 

40/86/0.01 37/81/0.03 34/75/0.03 

32- Generalized quartic GQ1 25/70/0.00 23/66/0.01 23/66/0.01 
33- DIAGONAL 7 11/42/0.00 11/ 42/ 0.02 11/42/0.01 
34- Full Hessian 8/28/0.00 8 /28/ 0.01 8/28/0.02 
35- SINCOS 25/63/0.02 23/58/0.03 23/58/0.03 
36- Generalized quartic GQ2 131/215/0.01 115/188/0.03 116/189/0.04 
37- ARGLINB (CUTE) 0/12/0.00 0/12/0.00 0/12/0.00 
38- FLETCHCR (CUTE) 97/209/0.02 88/191/ 0.03 93/197/0.03 
39- HIMMELBG (CUTE) 32/44/0.00 28/40/0.01 28/40/0.01 
40- HIMMELBH (CUTE) 24/56/0.00 24/56/0.00 24/56/0.01 
Total 2.957/13.724/1.6 2.501/5.566/1.51 2.261/5.209/1.27 
Total Work= 
NOI+NOFG+TIME 

18.281 9.577 8.74 
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algorithms 

Maulana2with 

BFGS 

Maulana1with 

BFGS 

BFGS TOOLS 

76.5% 84.6% 100% NOI 

38% 40.6% 100% NOFG 

79.4% 94.4% 100% TIME 

 

Table(7.3)  No. of best NOFG test problems 

No. of equal 

NOFG 

In both 

No. of best 

NOFG  

Maulana1 

with BFGS 

No. of best 

NOFG  

BFGS 
Tools 

14 26 0 NOI 

14 26 0 NOFG 

7 3 30 TIME 

 

Table(7.4)  No. of best NOFG test problems 

No. of equal 

NOFG 

In both 

No. of best 

NOFG  

Maulana2 

with BFGS 

No. of best 

NOFG  

BFGS 
Tools 

9 30 1 NOI 

9 29 2 NOFG 

6 5 29 TIME 

 

Tables(7.1-7.4) show that compared to the baseline BFGS70 Full VM-algorithm, the (PCG-

Maulana1with BFGS) algorithm improves upon it by a factor of (84.6%,40.6%, and 94.4%) 

in terms of NOI, NOFG, and TIME. Comparing the (PCG-Maulana2with BFGS) algorithm 

improves upon it by a factor of (76.5%, 38%, 79.4%) in terms of NOI, NOFG, and CPU, as 

shown in Table(6.3-6.4), reveals that the (PCG -Maulana1and PCG -Maulana2) algorithm 

achieves the strongest results in NOI, NOFG, and TIME under the accelerated Wolfe-Powell 

line search, demonstrating that the (PCG -Maulana1and PCG -Maulana2) algorithm is 

significantly more effective than the (BFGS70 Full VM-algorithm) CG-algorithm. The (PCG 

-Maulana1and PCG -Maulana2) algorithm achieves its best performance by making full use 

of all available resources (including NOI, NOFG, and TIME. 
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Figure(7.1): Profile of performance (BFGS against Maulana1 with BFGS) relative to the NOI 

 

Figure(7.2): Profile of performance (BFGS against Maulana1 with BFGS) relative to the NOF 
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Figure(7.3): Profile of performance (BFGS against Maulana1 with BFGS) relative to the TIME 

  

Tables ((7.1)-(7.4))demonstrate that the combinations of  (Maulana1 and Maulana2 with 

BFGS), exhibit significantly greater efficiency compared to the individual method ( BFGS). 

Our numerical analysis reflects the most recent findings. The technological mechanism in this 

context is noteworthy. Figures (7.1) through (7.3) illustrate the performance profiles of our 

approach in comparison to other methods. The data indicates that PCG The process 

demonstrates superior performance compared to identical iterative methods. Assessment of 

employment and duration. Based on the analysis of figures (7.1) - (7.3), we determined that 

the new algorithms outperform the algorithm used for comparison in our study. 

 

9. CONCLUSION  

In conclusion, this study introduces a novel and enhanced Preconditioned 

Conjugate Gradient (PCG) algorithm grounded in Dai and Liao's procedure, aiming to 

improve the efficiency and robustness of classical conjugate gradient methods, including 

Maulana's approach. By satisfying the coupling and sufficient descent conditions, the 

proposed algorithm demonstrates significant advancements in addressing large-scale 

unconstrained optimization problems. The integration of a modified quasi-Newton BFGS 

preconditioner and an accelerated Wolfe-Powell line search for step size calculation 

further enhances its performance. Theoretical analysis confirms the global convergence of 
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the algorithm under specific conditions, highlighting its potential for practical optimization 

tasks. Future work may explore its application in diverse problem domains and further 

refine its preconditioning strategies. 
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