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Abstract : In this review, we undertake an in-depth survey of the traditional as well as modern methods used in 
finding solutions for partial differential equations (henceforth PDEs). We categorise these equations into three 
main kinds: elliptic, parabolic, and hyperbolic. We also give illustrative examples of these PDEs and discuss the 
applications of them in a range of fields. This range extends from fluid dynamics (hydrodynamics), as well as 
thermal (heat) conduction, to quantum mechanics. Our exploration features a number of analyses used in this 
regard such as variable splitting or defactorising in addition to the transforms invented by Fourier and Laplace. 
Not only this but also this survey takes in numerical methods ranging from grid-based (finite difference), mesh-
based (finite element) to spectral. Also discussed in this paper is a range of special techniques that ranges from 
the variational techniques, Green's (fundamental solution) functions to perturbation (also known as Asymptotic 
expansion in addition to sketching the latest developments with respect to computational methods. This review 
also sheds light on current challenges that confront addressing complicated PDEs especially those nonlinear and 
multi-variable. In this regard, the paper calls for more research in order to develop more effective methods. The 
paper maps out the importance of PDE usages in real-life and its potential for more related discoveries in the 
future particularly with respect to areas such as machine learning and quantum computing. 
 
Keywords: Analytical Methods, Numerical Methods, Green’s Functions, Variational Methods, Computational 
Advancements. 
 

1. INTRODUCTION 

Partial differential equations (PDEs) can be considered as of paramount importance 

to creating diverse phenomena in a range of disciplines whether in science and 

engineering. These equations point out how physical parameters bring to light a temporal 

as well as spatial change. This results in them becoming important in different fields 

ranging from physics, engineering, to biology, and finance. For example, in terms of 

physics, the heat equation keeps in check how the heat spreads in a particular area, while 

on the other hand, the wave equation pull the strings of how the waves travel. In the realm 

of engineering, they come into play in a number of aspects such as analysing structures, 

fluid flow, as well as electromagnetic fields. They thus count towards creating as well as 

improving sophisticated systems (Evans, 2010). 

Friedman (2008) sets forth that the significance of PDEs does not only concern 

theoretical considerations but they boil down to applications that act on our daily life 

activities. To give an example, PDEs can be used in environmental engineering on order 

to describe how pollutants spread in the atmosphere and water bodies. This helps in 
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drawing policies set out for public health and safety domains. Likewise, Friedman also 

points out that in finance, PDEs can be used to derive option pricing model in order to 

assess risk and lay out the best strategies for investment. 

The aim of this review is to present a comprehensive survey of the methods that 

are used in solving PDEs with a focus on both analytical as well as numerical techniques. 

This review ains to shed light on several aspects concerning each method discussed. These 

aspects include the strengths and limitations of each method in addition to the applicability 

each one in addressing real-world problems. Not only this but also the review will go over 

recent developments in methods of addressing PDEs techniques and what they imply for 

future research. Taken together, it is hoped that this will stand in as a valuable resource for 

the field’s researchers and practitioners alike. 

 

2. CLASSIFICATION OF PDEs 

As noted above, PDEs can be categorised into three main categories according to 

their characteristics: elliptic, parabolic, and hyperbolic. This classification is important 

because it plays into the behaviour of solutions as well as the methods used to solve these 

solutions. 

 

Elliptic PDEs 

This type is known for lacking time-dependent terms and is commonly bound up 

with equilibrium problems. They can also be defined on a particular spatial domain and 

they generally tend to result in  smooth solutions. A standard form of an elliptic equation 

is: 

𝐴𝑢௫௫ + 𝐵𝑢௫௬ + 𝐶𝑢௬௬ = 𝐹                           … 1 

Where A, B, and CA are constants satisfying the condition B2 − 4AC < 0. 

Examples and Applications: 

● Laplace's Equation: ∇2 u = 0, used in electrostatics and fluid dynamics. 

● Poisson's Equation: ∇2 u = f, applied in gravitational and electrostatic potential 

problems. 

When performing equilibrium analysis, elliptic PDEs are of high importance 

because are they particularly so for determining temperature status in the solid objects. 

  



 
 

e-ISSN :3032-7113; p-ISSN :3032-6389, Hal 01-15 
 
 

Parabolic PDEs 

This type of PDEs is known for governing processes that can change with time and 

tends to prefer stability. It combines both spatial and temporal derivatives. A common 

form is: 

∂u/ ∂t =  A∇²u +  f                                    …  2 

With A representing a constant. 

Examples and Applications: 

● Heat Equation:
డ௨

డ௧
= 𝛼𝛻ଶ𝑢 , modeling heat conduction in a medium. 

● Fokker-Planck Equation: Governing the time evolution of probability distributions in 

stochastic processes. 

When performing transient analysis, parabolic PDEs play an important role 

particularly in heat conduction and material diffusion, which are two important processes 

in this regard. 

 

Hyperbolic PDEs 

This type of PDEs is known for having wave-like solutions. Also, this type is often 

linked with processes in the form of waves that travel spatially and temporally. A typical 

form is: 

(∂²u)/(∂t²)  =  c²∇²u                               …   3 

 

With ccc representing the wave speed. 

Examples and Applications: 

● Wave Equation:
డమ௨

డ௧మ = 𝑐ଶ𝛻ଶ𝑢 , used in acoustics, electromagnetics, and structural 

dynamics. 

● Transport Equation: Describing the propagation of waves in fluids and gases. 

Hyperbolic equations are important especially in the area of modeling dynamic systems 

where changes occur over time, such as seismic waves and vibrations. 

 

3. ANALYTICAL METHODS 

Analytical methods for solving partial differential equations (PDEs) involve 

deriving explicit solutions through mathematical techniques. Here, we discuss several key 

methods: Separation of Variables, Method of Characteristics, Fourier Transform Methods, 

and Laplace Transform Methods. 
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Separation of Variables 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1): A diagram of methods for solving partial differential equations and their 

types 

Description of the method: The method of separation of variables involves expressing a 

multivariable function as a product of single-variable functions. This technique simplifies 

PDEs into ordinary differential equations (ODEs), making them easier to solve. 

Example: Consider the heat equation in one dimension: 

డ௨

డ௧
= 𝛼

డమ௨

డ௫మ                                                    …    4 

Assume a solution of the form u(x,t)=X(x)T(t). Substituting this into the heat equation and 

separating variables yields: 

ଵ

ఈ்

ௗ்

ௗ௧
=

ଵ

௑

ௗమ௑

ௗ௫మ = −𝜆                                        …   5 
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Boundary Element 
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This leads to two ODEs: one for T(t) and one for X(x). Solving these gives the 

general solution in terms of eigenfunctions, which can be combined to find specific 

solutions based on boundary conditions. ( Kreyszig,2011) 

 

Method of Characteristics 

Explanation: The method of characteristics is a technique used primarily for 

solving first-order PDEs. It transforms a PDE into a set of ODEs along characteristic 

curves, where the PDE behaves like an ODE. 

Application: For a first-order PDE of the form: 

𝑎(𝑥, 𝑡)
డ௨

డ௫
+ 𝑏(𝑥, 𝑡)

డ௨

డ௧
= 𝑐(𝑥, 𝑡)                    …   6 

The characteristic equations are given by:          

 

ௗ௫

ௗ௦
= 𝛼(𝑥, 𝑡),

ௗ௧

ௗ௦
= 𝑏(𝑥, 𝑡),

ௗ௨

ௗ௦
 𝑐(𝑥, 𝑡)       …   7 

By solving these ODEs, one can construct the solution u(x,t) along the 

characteristics in the (x,t) plane. (Courant. et al,1989). 

 

Fourier Transform Methods 

Use in Solving Linear PDEs: Fourier transform methods are particularly useful 

for solving linear PDEs with constant coefficients. By applying the Fourier transform to 

the PDE, the spatial variables are transformed into frequency variables, simplifying the 

equation. 

For instance, consider the linear wave equation: 

డమ௨

డ௧మ − 𝑐ଶ డమ௨

డ௫మ = 0                                            …     8 

Applying the Fourier transform concerning x converts the PDE into an ODE in the 

frequency domain: 

డమû(௞,௧)

డ௧మ + 𝑐ଶ𝑘ଶû(𝑘, 𝑡) = 0                                …    9 

This ODE can be solved using standard techniques, and the inverse Fourier 

transform provides the solution in the spatial domain. (Folland,1999) 
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Transform Methods 

The Laplace Transform serves as an effective tool for solving linear PDEs, 

particularly when time-dependent variables are involved. It converts a time-based function  

into a function of the complex variable s: 

𝐿{𝑢(𝑡)} = 𝑈(𝑠) = ∫
ஶ

଴
𝑒ି௦௧𝑢(𝑡)𝑑𝑡                     …    10 

For example, consider the heat equation: 

డ௨

డ௧
= 𝛼

డమ௨

డ௫మ                                                           …      11 

If we apply the Laplace transform, we get: 

𝜕²𝑈/𝜕𝑥² =  (1/𝛼)  ∗  (𝑠𝑈(𝑥, 𝑠)  −  𝑢(𝑥, 0))                                 …    12 

This equation, after transforming it, can be treated as an ODE in the 𝑠-domain, 

while the reversal of Laplace transform gives the solution in the temporal domain. 

(Taha,2011). 

 

4. NUMERICAL METHODS 

In cases of PDEs not coming with exact solutions, numerical approaches can pan 

out invaluable. In our review, we account for four main methods: Finite Difference (FDM), 

Finite Element (FEM), Spectral, and Boundary Element Methods (BEM). 

 

Finite Difference Method 

Description of the method and Practical Usage: FDM isused to solve PDEs and 

this can be done by  replacing derivatives with finite differences. This method transforms 

the PDE into a number of algebraic equations. The area under study is divided into a grid, 

while the derivatives are approximated by using difference equations at each point in the 

grid. 

For instance, let us consider the following one-dimensional heat equation: 

∂u/ ∂t =  α(∂²u/ ∂x²)                                                               …  13 

If we use a central difference for the spatial derivative as well as an diect time-

stepping scheme, we can express this as follows: 

u_i^(n + 1)  =  u_i^n +  (αΔt/Δx²)(u_(i − 1)^n −  2u_i^n +  u_(i + 1)^n)               

…   14 

Randall (2007) puts forward that this method is used widely because of its simple 

yet effective results in solving problems of regular geometries. 
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Finite Element Method 

Outline and Major Benefits: EMs break the problem down into smaller, simpler 

parts known as elements. Each element is described according to its shape functions, while 

the solution here is expressed as a assemblage of these functions. 

Key Advantages: 

● Flexibility: Can handle complex geometries and boundary conditions. 

● Higher Accuracy: Higher-order elements can be used to achieve greater precision. 

● Adaptivity: Mesh refinement can be applied in regions requiring higher resolution. 

Zienkiewicz et al., (2000) highlight that some of the common applications of FEMs 

include structural analysis, fluid dynamics, and solving problems concerning temperature. 

 

Spectral Methods 

Description of the methods and Common Uses: This type of methods comprises 

decomposing the solution to a PDE making use of global functions such as Trigonometric 

series  (commonly known as Fourier serie) or Chebyshev functions (commonly known as 

Chebyshev polynomials). These methods makes use of the smooth status of solutions and 

it thus provides fast convergence for smooth problems. 

Typical Use Cases: 

● Fluid dynamics simulations (Navier-Stokes equations). 

● Atmospheric modeling and wave propagation problems. 

Canuto et al ( 2006) find that spectral methods prove their efficiency especially in 

the context of regular domain problems as they can bring up excellent accuracy at a 

fraction of computational costs, which is a real advantage. 

 

Boundary Element Method 

Description of the method and Key Applications: BEM is in fact a technique 

that makes a problem a simple aspect to deal with thanks to emphasising the boundaries 

of problems rather than the whole area. That way, it results into the PDE being an equation 

that only relates to the boundary. 
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5. SPECIFIC APPLICATIONS: 

● Acoustic and electromagnetic scattering: Solving problems where domain fields can 

be modeled via boundary interactions. 

● Potential flow problems: Used in fluid mechanics to analyze flow patterns around 

objects. 

Brebbia et al, (1992) sheds light on the BEM method as being of special usability 

when the matter concerns the problems in both infinite or semi-infinite domains. It can  

prove less costly in terms of computation in comparison to methods that work with the 

whole volume. 

 

6. SPECIAL TECHNIQUES 

These techniques used in solving partial differential equations (PDEs) can actually 

provide solid approaches for the purpose of obtaining solutions, especially in complex 

scenarios. Under this category, we focus on a number of techniques such as Variational 

and Perturbation Methods as well as Green’s Functions. 

 

Variational Methods 

Description of the methods: These methods transform PDEs into variational 

problems. In this type of methods, the solution either minimises a function  or, in contrast, 

maximises it. This approach can work well for the type of elliptic and parabolic PDEs. 

Solutions can be classified  here as stationary points of functionals. 

Applications in PDEs: 

● Boundary Value Problems: Used to derive weak forms of PDEs, allowing the 

application of the finite element method. 

● Optimization Problems: Variational methods are employed to find optimal shapes 

and structures in engineering applications. 

A common example is the minimization of the Dirichlet energy function: 

𝐸(𝑢) = ∫
 

ఆ
൬

ଵ

ଶ
|𝛻𝑢|ଶ + 𝑓(𝑢)൰ 𝑑𝛺                 …    15 

With f(u) being a potential term. (Evans,2010) 
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Green’s Functions 

Description of the functions: These are used to solve inhomogeneous linear 

differential equations. They perform this under specified boundary conditions. The 

Green’s function  function G(x,s) actually represents the system’s response at  to a unit 

impulse with the latter being applied at point s. 

Examples: 

For the one-dimensional Poisson equation: 

−
ௗమ௨

ௗ௫మ = 𝑓(𝑥)                             …     16 

The solution is written with Green’s function as follows: 

𝑢(𝑥) = ∫
௕

௔
𝐺(𝑥, 𝑠)𝑓(𝑠)𝑑𝑠               …     17 

Here, G(x,s) meets both the boundary conditions as well as the differential 

equation. 

In physics and engineering, Green's functions are often used to address boundary 

value problems. They can work out of  grear value in areas such as electrostatics and heat 

conduction (Arfken et al., 2005). 

 

Perturbation Methods 

Description of the methods: These help approximate a solution to a PDE by way 

of using a small parameter  ϵ. The solution here takes the form of a series expansion based 

on ϵ: 

𝑥(𝑥, 𝑡) = 𝑢଴(𝑥, 𝑡) + 𝜖𝑢ଵ(𝑥, 𝑡) + 𝜖ଶ𝑢ଶ(𝑥, 𝑡) + ⋯                    …18 

Application Contexts: 

● Nonlinear PDEs: Used in scenarios where a nonlinear problem can be treated as a 

small perturbation from a known solution of a linear problem. 

● Fluid Dynamics: Commonly applied in boundary layer theory and in analyzing 

stability in fluid flows. 

Nayfeh (1993) illustrated an example here and that is the analysis of small 

oscillations in nonlinear systems in which fhis type of techniques help getting the 

behaviour of the system to a near equilibrium. 
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7. RECENT ADVANCES AND DEVELOPMENTS 

There are some noteworthy developments in the field of PDEs that have enhanced 

our ability to solve complex problems across various disciplines to a great deal. Of 

particular importance in our overview are the modern techniques, technologies, and 

computational developments witnessed in the field. 

 

Overview of Modern Techniques and Technologies 

It is also noteworthy here to mention the recent developments in numerical 

methods, which include advanced methods of both finite element and finite volume 

approaches. These actually have led to Higher levels of accuracy and efficiency in solving 

PDEs. There are some techniques such as meshless methods and isogeometric analysis 

that make it possible to have more flexibility in dealing with complex geometries and 

boundary conditions. Not only this but also incorporation of machine learning and artificial 

intelligence is currently emerging as a strong tool for approximating solutions and 

identifying patterns especially when we have large datasets generated from simulations. 

 

Discussion of Computational Advancements 

There is no doubt that the recent developments in computational power and 

algorithm efficiency have spectacularly influenced the ability to solve PDEs. Indeed, high-

performance computing (HPC) has the ability of simulating large-scale systems, 

something that was not possible in the past.  To illustrate this, scientists have developed 

parallel computing techniques for the purpose of distributing computational tasks across 

multiple processors. This reduces the amount of time needed for simulations. 

Moreover, adaptive mesh refinement techniques have the advantage of making 

dynamic adjustments in the computational grid. In this process , we can see an 

improvement in accuracy in much-needed areas of interest while saving resources in those 

areas with less emergency. We should also mention here that the popularity of using cloud 

computing increase researchers’ accessibility to computational resources, which made it 

easier for them to do a lot o complex simulations without any need for extensive local 

infrastructure. 

Ghanem (et al,2003) assert that these advancements sketched above have 

implications, especially when it comes to fields such as climate modeling, fluid dynamics, 

and materials science. The reason lies in the fact that these intricate phenomena can now 

be studied with levels of detail and accuracy unseen in the past. 
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8. APPLICATIONS of PDEs 

Recall that PDEs are influential in various fields we noted earlier. They can create 

suitable models for understanding complicated physical phenomena. In our current paper, 

we highlight applications in certain fields that range from fluid dynamics, heat transfer, to 

quantum mechanics, along with their real-world implications. 

 

Fluid Dynamics 

The Navier-Stokes equations are PDEs we see them used in fluid dynamics for the 

purpose of modelling the flow of viscous fluids. They interpret the changes in terms of 

velocity, pressure, and density across both levels of time and space. 

Examples: 

● Turbulence Modeling: The Navier-Stokes equations are fundamental in predicting 

turbulent flows, which are critical in aerodynamics and meteorology. 

● Flow Around Objects: Understanding how fluids behave around vehicles, aircraft, 

and structures is vital for design optimization. 

Real-World Implications: Batchelor et al., (2000) bring out that modeling fluid 

dynamics precisely is important for tasks pertaining to engineering such as designing 

aircraft, forecasting weather as well as creating reliable HVAC systems. 

 

Heat Transfer 

The heat equation is a PDE of the parabolic type. This equation models the 

distribution of heat in a given area over a stretch of time. Like other equations, this has its 

own applications that range from from engineering to environmental science. 

Examples: 

● Heat Conduction: Used in analyzing the thermal properties of materials and 

optimizing heat exchangers. 

● Temperature Control in Buildings: Helps design systems for maintaining 

comfortable indoor environments. 

As for its Real-World Implications, lncropera (et al,2007) stress that it is important 

here that secure an understanding of what heat transfer is as this is of special importance 

for several aspects such as energy efficiency in buildings, the development of thermal 

management systems in electronics as well as the design of materials for high-temperature 

applications.  
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Quantum Mechanics 

PDEs such as that of Schrödinger can explain , in quantum mechanics, how 

quantum states evolve as time progresses. What adds to the importance of this equation is 

its grasp of how particles behave at the quantum scale. 

Examples: 

● Particle in a Box: The Schrödinger equation is used to analyze the quantization of 

energy levels in confined systems. 

● Quantum Tunneling: Describes phenomena where particles pass through potential 

barriers, crucial for understanding nuclear reactions and semiconductor physics. 

As for the Real-World Implications of this equation,  Griffiths (2018) points out 

the fact that Quantum computing, lasers, and medical imaging techniques like MRI are 

just a few of the applications of this equation. 

The applications of PDEs across fluid dynamics, heat transfer, and quantum 

mechanics underscore their significance in both theoretical and practical contexts. As 

computational capabilities continue to advance, the ability to model and solve complex 

systems governed by PDEs will expand, leading to innovations that can address pressing 

challenges in engineering, environmental science, and technology. 

PDEs’ applications actually reach out to areas related to fluid dynamics, heat 

transfer, as well as quantum mechanics. What this extension tells us is that it brings out 

the importance of these equations. As we continue to see technology build up, we will be 

able to i) map out more complex systems and ii) pin down solutions for problems in 

engineering and science. 

 

9. CHALLENGES AND FUTURE DIRECTIONS 

Current Challenges in Solving PDEs 

a. There are many real-world problems involve nonlinearity, as nonlinear PDEs) are 

often difficult to solve both from a analytical and numerical side. The complexity of 

nonlinearity can result in challenges such as susceptibility to being sensitive to initial 

conditions and the emergence of chaotic behavior. 

b. There is a proportional relationship between the number of variables in a system 

increases and high dimensionality in that the latter becomes a concern when the 

former increases. The same applies for the computational cost of solving PDEs 

which increases up profoundly in areas such as climate modeling and finance where 

we often find high-dimensional models are used. 
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c. A real challenge imposes itself here is the accurate modeling of systems with 

complex geometries or irregular boundaries. Traditional numerical methods pose a 

two-pronged challenge as it may require a lot of computational resources or it may 

not even be suitable for addressing such problems. 

d. While ensuring stable and accurate numerical methods is important, poor 

discretization can have some implications as it can cause errors that make solutions 

unreliable. 

 

Potential Areas for Future Research and Development 

a) A good area for potential research would be the use of machine learning with regular 

numerical methods as this can make solving PDEs not only faster but  more accurate. 

Algorithms that learn from data could end up causing big changes to fields such as 

engineering and materials science. 

b) Adaptive methods, like adjusting up the grid to match up with how the solution 

changes is also another area of potential further research as these methods can cut 

back on computing power in addition to improving accuracy. They can be helpful for 

problems with sudden changes e.g. shock waves. 

c) Another area for future research is the Multiscale modeling which ties together small-

scale with large-scale processes to look into complex systems. A good illustration of 

this is that linking up small and large models in materials science can bring up better 

predictions. 

d) Quantum computing asserts itself as a potential area for further studies as it might help 

solve PDEs for certain problems in a much faster manner. It could bring on big 

improvements in large simulations. 

e) There are also other domains where the application of PDEs need to be given some 

future scholarly interest. These areas include bioinformatics, environmental studies, 

as well as the social sciences. 

 

What we can figure out from the above is that there are some big challenges ahead 

for the field of PDEs. However, advances in computational and interdisciplinary 

approaches can put forward some very good opportunities for future research and 

development. 
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10. CONCLUSION 

This paper worked through different ways of solving partial differential equations 

ranging from classic and analytical to the more numerical and computational modern 

methods. Among the most important techniques that fall under analysis include the 

separation of variables, Fourier and Laplace transforms as well as numerical techniques 

which actually have been found pivotal to such PDEs in this area e.g. finite difference and 

finite element spectral methods. What’s more, special techniques e.g. variational methods, 

Green's functions, and perturbation methods have stretched the toolbox for solving 

particular types of PDEs. The current review mapped out some recent advances in 

computational power and how these, especially the integration of machine learning and AI 

with traditional methods, can offer us promising new pathways for solving different kinds 

of PDEs from complex, high-dimensional, to nonlinear ones. 

A lot of challenges still lie ahead in terms of nonlinearities, complex geometries, 

and numerical stability. Having said that, the pivotally important roles played by the PDEs 

in actual applications for fluid dynamics, heat transfer, and quantum mechanics bring 

about the need for more research despite such limitations. In the future, there will be a 

genuine need for the emerging computational technologies. Not only these but also will be 

needed is the development of more efficient and scalable methods. The logic behind this 

need is to improve our capability in solving PDEs further as well as to stretch the range of 

application to take in the increasingly complex problems in science and engineering. 
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