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Abstract. In this article, the starting condition was defined using a fuzzy initial value problem (IVP). Additionally, 

we discussed various methods for solving fuzzy differential equations, including the modified two-step Simpson 

method and Runge-Kutta of orders (two, three, four, five, and six). For each method, we provided a numerical 

example and the known convergence rates of the solutions. Then we discussed the comparison of the solutions of 

all methods, using computer software to offer rough solutions for the Runge Kutta method. And take some 

application solve by Runge-Kutta in physics and medical  
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1. INTRODUCTION 

Zadeh was the first to introduce the idea of a fuzzy set in [1]. Since then, the theory has 

developed to the point where it is now acknowledged as a unique discipline of applied 

mathematics. Because it offers a natural method for expressing dynamical systems under 

uncertainty, the theory of differential equations with fuzzy coefficients is significant in 

modeling scientific and engineering challenges. Fuzzy differential equations (FDE) and fuzzy 

initial value problems (IVP) are studied in [2], [3], and [4]. Theoretical and numerical solutions 

to FDEs were being discussed by a number of academics [5], [6], [7], [8], [9], [10], [11], [12], 

[13], [14], [15], [16]. We presented the Runge Kutta technique of order (2, 3, 4, 5 and 6) with 

a modified 2-step Simpson method to solve some examples of FDE, and ranking from best to 

least of a solution (sol) of all methods. Throughout this study, we proposed the Runge Kutta 

technique to solve FDE and employing computer software to supply approximate sols of 

specific instances. 

 

2. METHODOLOGY STUDY 

Fuzzy initial value problem 

Take the following first order Fuzzy IVP of DE: 

" {
Ƴ′(ᵼ) = f(ᵼ, Ƴ(ᵼ)), ᵼ ∈ [ᵼ0, T]

Ƴ(ᵼ0) = Ƴ0
" 

When Ƴ be fuzzy function of ᵼ, f(ᵼ, Ƴ) with variable ᵼ and a fuzzy var. Ƴ & Ƴ′ are fuzzy 

derivative of Ƴ and Ƴ(ᵼ0) = Ƴ0 be the triangular fuzzy number [17]. 
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A fuzzy function y is written as follows: Ƴ = [Ƴ, Ƴ‾ ]. So a r-level set on Ƴ(ᵼ) when ᵼ ∈ [ᵼ0, T] 

was "[Ƴ(ᵼ)]ᵲ = [Ƴ(ᵼ; ᵲ), Ƴ‾ (ᵼ; ᵲ)], [Ƴ(ᵼ0)]ᵲ = [Ƴ(ᵼ0; ᵲ), Ƴ‾ (ᵼ0; ᵲ)], ᵲ ∈ (0,1], it is mean  f(ᵼ, Ƴ) =

[f(ᵼ, Ƴ), f‾(ᵼ, Ƴ)] and f(ᵼ, Ƴ) = F[ᵼ, Ƴ, Ƴ‾ ],  f‾(ᵼ, Ƴ) = G[ᵼ, Ƴ, Ƴ‾ ], " Since  Ƴ′ = f(ᵼ, Ƴ) we get 

"
f(ᵼ, Ƴ(ᵼ); ᵲ) = F[ᵼ, Ƴ(ᵼ; ᵲ), Ƴ‾ (ᵼ; ᵲ)]

f‾(ᵼ, Ƴ(ᵼ); ᵲ) = G[ᵼ, Ƴ(ᵼ; ᵲ), Ƴ‾ (ᵼ; ᵲ)]
" 

And then f(ᵼ, Ƴ(ᵼ))(s) = sup{Ƴ(ᵼ)(τ) ∖ s = f(ᵼ, τ)} , s ∈ R 

So the fuzzy number f(ᵼ, Ƴ(ᵼ)) follows that 

"

[f(ᵼ, Ƴ(ᵼ))]ᵲ  = [f(ᵼ, Ƴ(ᵼ); ᵲ), f‾(ᵼ, Ƴ(ᵼ); ᵲ)], ᵲ ∈ (0,1]

 where f(ᵼ, Ƴ(ᵼ); ᵲ)  = min{f(ᵼ, u) ∣ u[Ƴ(ᵼ)]ᵲ}

f(ᵼ, Ƴ(ᵼ); ᵲ)  = max{f(ᵼ, u) ∣ u[Ƴ(ᵼ)]ᵲ}

" 

The function f: R → RF is known as a F. continuous fun. If for each constant ᵼ0 ∈ R with 

ε > 0, δ > 0 so |ᵼ − ᵼo| < δ implies D[f(ᵼ), f(ᵼ0)] < ε exists [18]. 

In D, the fuzzy function toke is continuous, as well as the continuity of such f(ᵼ, Ƴ(ᵼ); ᵲ) assures 

the definition's existence of f(ᵼ, Ƴ(ᵼ); ᵲ) for ᵼ ∈ [ᵼ0, T] with ᵲ ∈ [0,1]. So, the functions G and F 

can also be definitive. 

A modified two-step Simpson method 

Assuming “Y = [Y, Y‾]” is an exact sol with “Ƴ = [Ƴ, Ƴ‾ ]” is the 2-step modified Simpson 

method's approximate sol initial value Equation [19]. Assume, 

"[Y(ᵼ)]ᵲ = [Y(ᵼ; ᵲ), Y‾(ᵼ; ᵲ)] ,  [Ƴ(ᵼ)]ᵲ = [Ƴ(ᵼ; ᵲ), Ƴ‾ (ᵼ; ᵲ)]" 

It's also worth noting that a value ᵲ be constant during each integration phase. At ᵼռ, the 

precise and approximation sols are indicated by 

"[Yռ]ᵲ = [Yռ(ᵲ), Y‾ռ(ᵲ)] ,  [Ƴռ]ᵲ = [Ƴռ(ᵲ), Ƴ‾ ռ(ᵲ)] (0 ≤ ռ ≤ N)" 

The grid locations are determined, accordingly.  

h =
T − ᵼ0

N
,  ᵼi = ᵼ0 + ih  , "0 ≤ i ≤ N" 

We get the following results using the modified Simpson method: 

Yռ+1(ᵲ) = Yռ−1(ᵲ) +
h

3
F[ᵼռ−1, Yռ−1(ᵲ), Y‾ռ−1(ᵲ)] +

4h

3
F[ᵼռ, Yռ(ᵲ), Y‾ռ(ᵲ)]

 +
h

3
F [ᵼռ+1, Yռ(ᵲ) + hF[ᵼռ, Yռ(ᵲ), Y‾ռ(ᵲ)], Y‾ռ(ᵲ) + hG[ᵼռ, Yռ(ᵲ), Y‾ռ(ᵲ)]]

 +h3A(ᵲ)
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And  

Y‾ռ+1(ᵲ) = Y‾ռ−1(ᵲ) +
h

3
G[ᵼռ−1, Yռ−1(ᵲ), Y‾ռ−1(ᵲ)] +

4h

3
G[ᵼռ, Yռ(ᵲ), Y‾ռ(ᵲ)] 

 +
h

3
G [ᵼռ+1, Yռ(ᵲ) + hF[ᵼռ, Yռ(ᵲ), Y‾ռ(ᵲ)], Y‾ռ(ᵲ) + hG[ᵼռ, Yռ(ᵲ), Y‾ռ(ᵲ)]]

 +h3A‾ (ᵲ)
 

When A = [A, A‾ ], [A]ᵲ = [A(ᵲ), A‾ (ᵲ)] and  

[A]ᵲ = [
1

6
f ′(ξ2, Y(ξ2)) ⋅ fƳ(ᵼi+1, ξ3) −

h2

90
f (4)(ξ1, Y(ξ1))]

ᵲ

. 

⟹
Ƴռ+1(ᵲ) = Ƴռ−1(ᵲ) +

h

3
F[ᵼռ−1, Ƴռ−1(ᵲ), Ƴ‾ ռ−1(ᵲ)] +

4h

3
F[ᵼռ, Ƴռ(ᵲ), Ƴ‾ ռ(ᵲ)]

 +
h

3
F [ᵼռ+1, Ƴռ(ᵲ) + hF[ᵼռ, Ƴռ(ᵲ), Ƴ‾ ռ(ᵲ)], Ƴ‾ ռ(ᵲ) + hG[ᵼռ, Ƴռ(ᵲ), Ƴ‾ ռ(ᵲ)]]

 

And 

Ƴ‾ ռ+1(ᵲ) = Ƴ‾ ռ−1(ᵲ) +
h

3
G[ᵼռ−1, Ƴռ−1(ᵲ), Ƴ‾ ռ−1(ᵲ)] +

4h

3
G[ᵼռ, Ƴռ(ᵲ), Ƴ‾ ռ(ᵲ)]

 +
h

3
G [ᵼռ+1, Ƴռ(ᵲ) + hF[ᵼռ, Ƴռ(ᵲ), Ƴ‾ ռ(ᵲ)], Ƴ‾ ռ(ᵲ) + hG[ᵼռ, Ƴռ(ᵲ), Ƴ‾ ռ(ᵲ)]]

 

 

Runge-Kutta of order two 

Let an exact sol [Y(ᵼ)]ᵲ = [Y(ᵼ; ᵲ), Y‾(ᵼ; ᵲ)], be approximate by [Ƴ(ᵼ)]ᵲ =

[Ƴ(ᵼ; ᵲ), Ƴ‾ (ᵼ; ᵲ)] [20]. A places on the grid where the sols are computed are h =
T−ᵼ0

N
, ᵼi = ᵼ0 +

ih; 0 ≤ i ≤ N, then we define: 

Ƴ(ᵼռ+1, ᵲ) − Ƴ(ᵼռ, ᵲ) = h [
k1

2(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k2
2(ᵼռ, Ƴ(ᵼռ, ᵲ))

k1(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k2(ᵼռ, Ƴ(ᵼռ, ᵲ))
] 

When 

k1 = hF[ᵼռ, Ƴ(ᵼռ, ᵲ), Ƴ‾ (ᵼռ, ᵲ)]

k2 = hF [ᵼռ + h, Ƴ(ᵼռ, ᵲ) + k1(ᵼռ, Ƴ(ᵼռ, ᵲ)), Ƴ‾ (ᵼռ, ᵲ) + k1
̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))]

 

And Ƴ‾ (ᵼռ+1, ᵲ) − Ƴ‾ (ᵼռ, ᵲ) = h [
k1

2̅̅̅̅ (ᵼռ,Ƴ(ᵼռ,ᵲ))+k2
2̅̅̅̅ (ᵼռ,Ƴ(ᵼռ,ᵲ))

k1
̅̅̅̅ (ᵼռ,Ƴ(ᵼռ,ᵲ))+k2

̅̅̅̅ (ᵼռ,Ƴ(ᵼռ,ᵲ))
] 

When 
k1 = hG[ᵼռ, Ƴ(ᵼռ, ᵲ), Ƴ‾ (ᵼռ, ᵲ)]

k2 = hG [ᵼռ + h, Ƴ(ᵼռ, ᵲ) + k1(ᵼռ, Ƴ(ᵼռ, ᵲ)), Ƴ‾ (ᵼռ, ᵲ) + k1
̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))]

 

So can be define G(ᵼռ, Ƴ(ᵼռ, ᵲ)) = h [
k1

2̅̅̅̅ (ᵼռ,Ƴ(ᵼռ,ᵲ))+k2
2̅̅̅̅ (ᵼռ,Ƴ(ᵼռ,ᵲ))

k1
̅̅̅̅ (ᵼռ,Ƴ(ᵼռ,ᵲ))+k2

̅̅̅̅ (ᵼռ,Ƴ(ᵼռ,ᵲ))
] 
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So we get: 

Y(ᵼռ+1, ᵲ) = Y(ᵼռ, ᵲ) + F[ᵼռ, Y(ᵼռ, ᵲ)]]

Y‾(ᵼռ+1, ᵲ)  = Y‾(ᵼռ, ᵲ) + G[ᵼռ, Y(ᵼռ, ᵲ)]

and  

Ƴ(ᵼռ+1, ᵲ)  = Ƴ(ᵼռ, ᵲ) + F[ᵼռ, Ƴ(ᵼռ, ᵲ)]

Ƴ‾ (ᵼռ+1, ᵲ)  = Ƴ‾ (ᵼռ, ᵲ) + G[ᵼռ, Ƴ(ᵼռ, ᵲ)]

 

clearly Ƴ(ᵼ; ᵲ) and Ƴ‾ (ᵼ; ᵲ) converge to Y(ᵼ; ᵲ) and Y‾(ᵼ; ᵲ) whenever h → 0 

Runge-Kutta of order three 

Let that we have a fuzzy IVP Ƴ′(ᵼ) = f(ᵼ, Ƴ(ᵼ))Ƴ(ᵼ0) = Ƴ0 [21]. All Runge-Kutta 

techniques are based on expressing the difference between the value of y at ᵼռ+1 and ᵼռ as 

Ƴռ+1 − Ƴռ = ∑i=0
m  wiki 

When wi 
′s are constant for all i and ki = hf(ᵼռ + aih, Ƴռ + ∑j=1

i−1  cijkj) 

Assume Ƴ(ᵼռ+1) = Ƴ(ᵼռ) +
h

2
[

k1
2+k2

2

k1+k2
+

k2
2+k3

2

k2+k3
], When 

k1 = hf(ᵼռ, Ƴ(ᵼռ))

k2 = hf(ᵼռ + a1, Ƴ(ᵼռ) + a1k1)
 

k3 = hf(ᵼռ + a2, Ƴ(ᵼռ) + a2k2) 

With the parameters a1, a2 were selected to produce Ƴռ+1 closer to Ƴ(ᵼռ+1). The 

parameter values a1 =
2

3
, a2 =

2

3
 

Assume that an exact sol [Y(ᵼ)]ᵲ = [Y(ᵼ; ᵲ), Y‾(ᵼ; ᵲ)], be approximated by [Ƴ(ᵼ)]ᵲ =

[Ƴ(ᵼ; ᵲ), Ƴ‾ (ᵼ; ᵲ)]. A places on the grid where the sols are computed are h =
T−ᵼ0

N
, ᵼi = ᵼ0 +

ih; 0 ≤ i ≤ N. Now can be define: 

Ƴ(ᵼռ+1, ᵲ) − Ƴ(ᵼռ, ᵲ)

=
h

2
[
k1

2(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k2 2(ᵼռ, Ƴ(ᵼռ, ᵲ))

k1(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k2(ᵼռ, Ƴ(ᵼռ, ᵲ))

+
k2

2(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k3 2(ᵼռ, Ƴ(ᵼռ, ᵲ))

k2(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k3(ᵼռ, Ƴ(ᵼռ, ᵲ))
] 

When 

k1 = hF[ᵼռ, Ƴ(ᵼռ, ᵲ), Ƴ‾ (ᵼռ, ᵲ)] 

k2 = hF [ᵼռ +
2

3
, Ƴ(ᵼռ, ᵲ) +

2

3
k1(ᵼռ, Ƴ(ᵼռ, ᵲ)), Ƴ‾ (ᵼռ, ᵲ) +

2

3
k1
̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))]

k3 = hF [ᵼռ +
2

3
, Ƴ(ᵼռ, ᵲ) +

2

3
k2(ᵼռ, Ƴ(ᵼռ, ᵲ)), Ƴ‾ (ᵼռ, ᵲ) +

2

3
k2
̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))]
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With 

Ƴ‾ (ᵼռ+1, ᵲ) − Ƴ‾ (ᵼռ, ᵲ)

=
h

2
[
k1

2̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k2
2̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))

k1
̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k2

̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))
+

k2
2̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k3

2̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))

k2
̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k3

̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))
] 

When 

k1 = hG[ᵼռ, Ƴ(ᵼռ, ᵲ), Ƴ‾ (ᵼռ, ᵲ)]

k2 = hG [ᵼռ +
2

3
, Ƴ(ᵼռ, ᵲ) +

2

3
k1(ᵼռ, Ƴ(ᵼռ, ᵲ)), Ƴ‾ (ᵼռ, ᵲ) +

2

3
k1
̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))]

k3 = hG [ᵼռ +
2

3
, Ƴ(ᵼռ, ᵲ) +

2

3
k2(ᵼռ, Ƴ(ᵼռ, ᵲ)), Ƴ‾ (ᵼռ, ᵲ) +

2

3
k2
̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))]

 

We also define: 

F(ᵼռ, Ƴ(ᵼռ, ᵲ)) =
h

2
[
k1

2(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k2
2(ᵼռ, Ƴ(ᵼռ, ᵲ))

k1(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k2(ᵼռ, Ƴ(ᵼռ, ᵲ))
+

k2
2(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k3

2(ᵼռ, Ƴ(ᵼռ, ᵲ))

k2(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k3(ᵼռ, Ƴ(ᵼռ, ᵲ))
] 

G(ᵼռ, Ƴ(ᵼռ, ᵲ)) =
h

2
[
k1

2̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k2
2̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))

k1
̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k2

̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))
+

k2
2̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k3

2̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))

k2
̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ)) + k3

̅̅ ̅(ᵼռ, Ƴ(ᵼռ, ᵲ))
] 

So we get  
Y(ᵼռ+1, ᵲ)  = Y(ᵼռ, ᵲ) + F[ᵼռ, Y(ᵼռ, ᵲ)]

Y‾(ᵼռ+1, ᵲ)  = Y‾(ᵼռ, ᵲ) + G[ᵼռ, Y(ᵼռ, ᵲ)]
 

With
Ƴ(ᵼռ+1, ᵲ) = Ƴ(ᵼռ, ᵲ) + F[ᵼռ, Ƴ(ᵼռ, ᵲ)]

Ƴ‾ (ᵼռ+1, ᵲ) = Ƴ‾ (ᵼռ, ᵲ) + G[ᵼռ, Ƴ(ᵼռ, ᵲ)]
 

It’s obvious  Ƴ(ᵼ; ᵲ) , Ƴ‾ (ᵼ; ᵲ) converge to Y(ᵼ; ᵲ) , Y‾(ᵼ; ᵲ) , respectively where h → 0 

Runge-Kutta of order four 

The first-order FDE is written in the following form: 
Ƴ̇(ᵼ) = f(ᵼ, Ƴ)

Ƴ(ᵼo) = Ƴo
 [22]. An exact sol 

would be: [Y(ᵼռ)]ᵲ = [Y(ᵼռ; ᵲ), Y‾(ᵼռ; ᵲ)] an approximate sol is as follows: [Ƴ(ᵼռ)]ᵲ =

[Ƴ(ᵼռ; ᵲ), Ƴ‾ (ᵼռ; ᵲ)]. 

The Runge-Kutta technique of order four was used. 

[Ƴ(ᵼռ)]ᵲ = [Ƴ(ᵼռ; ᵲ), Ƴ‾ (ᵼռ; ᵲ)

Ƴ(ᵼռ+1; ᵲ) = Ƴ(ᵼռ; ᵲ) + ∑  

4

j=1

 wjkj,1(ᵼռ, Ƴ(ᵼռ, ᵲ))

Ƴ‾ (ᵼռ+1; ᵲ) = Ƴ‾ (ᵼռ; ᵲ) + ∑  

4

j=1

 wjkj,2(ᵼռ, Ƴ(ᵼռ, ᵲ))

 

When kj,1, kj,2 describe the following: 

k1,1(ᵼռ, Ƴ(ᵼռ; ᵲ)) = minh {Ƴ(ᵼռ, u) ∣ u ∈ (Ƴ(ᵼռ; ᵲ), Ƴ‾ (ᵼռ; ᵲ))} 
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 k1,2(ᵼռ, Ƴ(ᵼռ; ᵲ)) = maxh {Ƴ(ᵼռ, u): u ∈ (Ƴ(ᵼռ; ᵲ), Ƴ‾ (ᵼռ; ᵲ))} 

 k2,1(ᵼռ, Ƴ(ᵼռ; ᵲ)) = minh {Ƴ (ᵼռ +
h

2
, u) : u ∈ (q1,1(ᵼռ; Ƴ(ᵼռ, ᵲ)), q1,2(ᵼռ; Ƴ(ᵼռ, ᵲ)))} 

k2,2(ᵼռ, Ƴ(ᵼռ; ᵲ)) = maxh {Ƴ (ᵼռ +
h

2
, u) : u ∈ (q1,1(ᵼռ; Ƴ(ᵼռ, ᵲ)), q1,2(ᵼռ; Ƴ(ᵼռ, ᵲ)))} 

k3,1(ᵼռ, Ƴ(ᵼռ; ᵲ)) = minh {Ƴ (ᵼռ +
h

2
, u) : u ∈ (q2,1(ᵼռ; Ƴ(ᵼռ, ᵲ)), q2,2(ᵼռ; Ƴ(ᵼռ, ᵲ)))} 

k3,2(ᵼռ, Ƴ(ᵼռ; ᵲ)) = maxh {Ƴ (ᵼռ +
h

2
, u) : u ∈ (q2,1(ᵼռ; Ƴ(ᵼռ, ᵲ)), q2,2(ᵼռ; Ƴ(ᵼռ, ᵲ)))} 

k4,1(ᵼռ, Ƴ(ᵼռ; ᵲ)) = minh {Ƴ (ᵼռ +
h

2
, u) : u ∈ (q3,1(ᵼռ; Ƴ(ᵼռ, ᵲ)), q3,2(ᵼռ; Ƴ(ᵼռ, ᵲ)))} 

k4,2(ᵼռ, Ƴ(ᵼռ; ᵲ)) = maxh {Ƴ (ᵼռ +
h

2
, u) : u ∈ (q3,1(ᵼռ; Ƴ(ᵼռ, ᵲ)), q3,2(ᵼռ; Ƴ(ᵼռ, ᵲ)))}  

When: 

q1,1(ᵼռ; Ƴ(ᵼռ, ᵲ))  = Ƴ(ᵼռ, ᵲ) +
h

2
k1,1(ᵼռ, Ƴ(ᵼռ; ᵲ))

q1,2(ᵼռ; Ƴ(ᵼռ, ᵲ))  = Ƴ‾ (ᵼռ, ᵲ) +
h

2
k1,2(ᵼռ, Ƴ(ᵼռ; ᵲ))

q2,1(ᵼռ; Ƴ(ᵼռ, ᵲ))  = Ƴ(ᵼռ, ᵲ) +
h

2
k2,1(ᵼռ, Ƴ(ᵼռ; ᵲ))

q2,2(ᵼռ; Ƴ(ᵼռ, ᵲ))  = Ƴ‾ (ᵼռ, ᵲ) +
h

2
k2,2(ᵼռ, Ƴ(ᵼռ; ᵲ))

q3,1(ᵼռ; Ƴ(ᵼռ, ᵲ))  = Ƴ(ᵼռ, ᵲ) +
h

2
k3,1(ᵼռ, Ƴ(ᵼռ; ᵲ))

q3,2(ᵼռ; Ƴ(ᵼռ, ᵲ))  = Ƴ‾ (ᵼռ, ᵲ) +
h

2
k3,2(ᵼռ, Ƴ(ᵼռ; ᵲ))

 

Using just the initial condition, we can now calculate:  

Ƴ(ᵼռ+1; ᵲ) = Ƴ(ᵼռ; ᵲ)

+
1

6
(k1,1(ᵼռ, Ƴ(ᵼռ; ᵲ)) + 2k2,1(ᵼռ, Ƴ(ᵼռ; ᵲ)) + 2k3,1(ᵼռ, Ƴ(ᵼռ; ᵲ))

+ k4,2(ᵼռ, Ƴ(ᵼռ; ᵲ)) 

Ƴ‾ (ᵼռ+1; ᵲ) = Ƴ‾ (ᵼռ; ᵲ)

+
1

6
(k1,2(ᵼռ, Ƴ(ᵼռ; ᵲ)) + 2k2,2(ᵼռ, Ƴ(ᵼռ; ᵲ)) + 2k3,2(ᵼռ, Ƴ(ᵼռ; ᵲ))

+ k4,2(ᵼռ, Ƴ(ᵼռ; ᵲ)) 

A sol at ᵼռ where: 0 ≤ ռ ≤ N, a = ᵼo ≤ ᵼ1 ≤ ᵼ2 ≤ ⋯ ≤ ᵼռ = b, and h =
b−a

N
= ᵼռ+1 − ᵼռ, 

Y(ᵼռ+1; ᵲ) = Y(ᵼռ; ᵲ) +
1

6
F[ᵼռ, Ƴ(ᵼռ; ᵲ)] 

Y‾(ᵼռ+1; ᵲ) = Y‾(ᵼռ; ᵲ) +
1

6
G[ᵼռ, Ƴ(ᵼռ; ᵲ)],  

Ƴ(ᵼռ+1; ᵲ) = Ƴ(ᵼռ; ᵲ) +
1

6
F[ᵼռ, Ƴ(ᵼռ; ᵲ)] 

Ƴ‾ (ᵼռ+1; ᵲ) = Ƴ‾ (ᵼռ; ᵲ) +
1

6
G[ᵼռ, Ƴ(ᵼռ; ᵲ)] 

The proposed Runge-Kutta approach (by MATLAB) is depicted in the Figure 1. 
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3. RESULT AND DISCUSSION   

Appllication in Radio Nuclides  : Let be considered a first-order ordinary differential 

equation 

y′(w) =  −x. y(w), y(w0) = y0,w ∈ I = [w0, a] 

Where x stands for the decay constant, y0, is the quantity of radionuclides in the mixture 

at the beginning of the operation, and y(w) is the quantity of radionuclides in each radioactive 

material. Given that nuclear disintegration is a stochastic process, the quantity of radionuclides 

can be unpredictable. Assuming that the starting value y0, in this scenario is unclear. However 

there are some circumstances in which it may not be known exactly how many radionuclides 

are in the radioactive material under investigation. . In this case, the starting valuey0  is 

regarded as an intuitionistic fuzzy number with a triangular form. 

Let x = 1 , I = [0, 1] and y0 = (5, 7, 9 ; 3, 7,11) . (α, β) – cut of y(w0) =  y0 is given by:  

y(w0,r) = y0(r) =     {[yα, yα̅̅ ̅], [yβ, yβ̅̅ ̅]}          , r ∈ [0, 1] and 0 ≤ r =  α + β ≤ 1. 

That means y(w0,r) = y0(r) = {[5 + 2α, 9 − 2α], [3 + 4β, 11 − 4β]} 

, r ∈ [0, 1] and 0 ≤ r =  α + β ≤ 1. 

In this problem Three methods can be used to approximate solutions for both 

membership and non-membership functions: the Runge-Kutta technique, the modified Euler 

method, and the Euler method. 

Case 1: (1, 2) Differentiability  

Using equation (1.1) and the idea of (1, 2)-Differentiability, the following are the 

membership function's precise solutions: 

yα(w) = (5 + 2α)e−w; yα̅̅ ̅ = (9 − 2α 

 

and the following provides the precise non-membership function solutions: 

yb(w) = (3 + 4b)e−w; yB(w)̅̅ ̅̅ ̅̅ ̅̅ = (11 − 4B)e−w 

Table 1 displays the total error between the approximate and exact solutions for the 

membership function at various r-levels. 

Table. 1. Absolute Error for Membership function 

r Error by Euler Method Error by Modified Euler 

Method 

Error by Runge-Kutta 

Method 

0.0 0.4090157477 0.0016303928 8.3048E-06 

0.22 0.3095525978 0.0013343142 6.6049E-06 

0.42 0.2094894484 0.0010382356 5.0042E-06 

0.61 0.2063814014 0.0009461612 4.6046E-06 

0.81 0.2065814015 0.000126161 4.6045E-06 

1.0 0.2062814014 0.00 10 261612 4.6045E-06 
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The total difference between the exact and approximate solutions for the non-

membership function at different r-levels is shown in Table 2. 

Table. 2.Absolute Error for Non - Membership function 

r Error by Euler Method Error by Modified Euler 

Method 

Error by Runge-Kutta 

Method 

0.0 0.2643814016 0.30275884 0.309390333 

0.22 0.2642814015 0.242807073 0.247332268 

0.42 0.2644814015 0.181855305 0.185374201 

0.61 0.2641814014 0.122903536 0.123316134 

0.81 0.2641814014 0.062951768 0.061358067 

1.0 0.2642814014 0.003261612 4.6634E-06 

 

Case 2: (2, 1) Differencing  

Equation (1.1) can be solved precisely for the membership function by using the 

concept of (2, 1)-Differentiability. The solutions are as follows: 

yα(w) = (5 + 2α)e−w; yα̅̅ ̅ = (9 − 2α 

and the exact solutions of non-membership function are given by:  

yb(w) = (3 + 4b)e−w; yB(w)̅̅ ̅̅ ̅̅ ̅̅ = (11 − 4B)e−w 

The total difference at different r-levels between the exact and approximate 

membership function solutions is shown in Table 3. 

Table 3. Absolute Error for Membership function 

r Error by Euler Method Error by Modified Euler 

Method 

Error by Runge-Kutta 

Method 

0.0 0.2162814016 0.1953379421 0.1531895167 

0.22 0.2162814021 0.1923903536 0.1241916134 

0.42 0.2162814015 0.0993427653 0.0931937101 

0.61 0.2162814014 0.0963951768 0.06473958067 

0.81 0.2162814015 0.0933475884 0.10333979033 

1.0 0.2162814014 0.0903261612 4.3636E-06 

 

Table 4 displays the overall error of the approximate and exact solutions for the non-

membership function at various r-levels. 

Table 4. Absolute Error for Non-Membership function 

r Error by Euler Method Error by Modified Euler 

Method 

Error by Runge-Kutta 

Method 

0.0 0.1993314947 0.034607855 1.6175E-05 

0.22 0.1793051957 0.024886284 1.134E-05 

0.42 0.1593788968 0.024164713 1.100E-05 

0.61 0.1393525979 0.014443142 6.269E-06 

0.81 0.1263814014 0.004261612 4.266E-06 

1.0 0.1263814014 0.004261612 4.266E-06 

 

Case 3: (1, 1) Differencing  

Equation (1.1) can be solved precisely for the membership function using the concept 

of (1, 1)-Differentiability using the following formula: 

 𝑦𝛼 (𝑤) = (5 + 2𝛼)𝑒−𝑤 ; 𝑦𝛼̅̅ ̅ = (9 − 2𝛼) 
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and the specific responses for the non-membership function are as follows: 

yb(w) = (3 + 4b)e−w; yB(w)̅̅ ̅̅ ̅̅ ̅̅ = (11 − 4B)e−w 

The errors made by the numerical methods described in this article are contrasted in 

the following graphic. Data was imported into MATLAB (Version R2021) to construct the 

figure. 

 

Case 4: (2, 2) Differentiability  

The exact answers of the membership function are given by: 

yα(w) = (5 + 2α)e−w; yα̅̅ ̅ = (9 − 2α) 

 

and the precise responses for the non-membership function are as follows: 

yb(w) = (3 + 4b)e−w; yB(w)̅̅ ̅̅ ̅̅ ̅̅ = (11 − 4B)e−w 

An example of comparing the errors between the accurate and approximate solutions for the 

membership and non-membership functions may be seen in the figure below. 

 

It is evident that the lengths of the supports of the equation (4.1) solutions under (1,1)-

Differentiability, (1,2)-Differentiability, and (2,1)-Differentiability will all increase as the 

independent variable "w" rises. This indicates that as time passes, the system's radioactivity 

increases and its.  

There could even be a negative radionuclide population. Nonetheless, it is commonly 

recognized that a material's radioactivity never increases above zero and always decreases with 

time. Thus, for problems of this kind, (2, 2)-Differentiability makes sense. The numerical 
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solutions to equation (1.1) obtained by the Runge-Kutta method are substantially superior to 

those obtained by the other two methods in each of the four cases. However, by utilizing a 

smaller minimum step size, the inaccuracy could be reduced. 

Application for COVID-19 

Figures 2.3 and 2.4 show that the number of affected individuals was at least 200,000, 

reaching a high on Day 20. After that, the curvature started to progressively flatten. The 

government's protective measures, which mandate that everyone exercise social distancing and 

isolation at home, are most likely to blame for this. An increase in the number of impacted 

individuals who recovered from COVID-19 is seen in Figures 2.5 and 2.6. It is estimated that 

400000 people are still alive. This could be as a result of the fact that more infected individuals 

are treated in quarantine centers with isolation and other therapies. 

Figures 2.7 and 2.8 display the graph of all three SIR model classes, with starting 

parameters of 1.63 10-7 and 0.125, respectively, indicating that the immunization has not yet 

been administered in this simulation. The basic reproduction number (R_0) for the simulation 

model seen in Figures 2.7 and 2.8 is provided below. Consequently, we can state that the output 

computation fits the Euler's technique with SIR model flawlessly. 

 

 

 

 

 

Figure 2. 

Simulation of Susceptible (S) in SIR calculation of population 

Figure 1 

 Simulation of Susceptible (S) in Euler’s calculation of population 

Figure 3 

Simulation of Infected (I) in Euler’s calculation of population 

Figure 4 

Simulation of Infected (I) in SIR calculation of population 



 
 

e-ISSN :3032-7113; p-ISSN :3032-6389, Hal 248-261 

 

 

 

 

 

 

 

 

 

    

 

 

Figure 6 

Simulation of Recovered (I) in SIR calculation of population 

Figure 5 

Simulation of Recovered (I) in Euler’s calculation of population 

Figure 7 

Simulation of the Susceptible (S), Infected (I), Recovered (R) in Euler’s  

Figure 8 

Simulation of the Susceptible (S), Infected (I), 

Recovered (R) in SIR 

Figure 9 

Simulation of Recovered (I) in Runge Kutta fourth 
order calculation of population 

Figure 10 

Simulation of Recovered (I) in Runge Kutta fourth 
order calculation of population 
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4. CONCLUSION 

Through this article we apply the sol of Runge-Kutta method of order (2 , 3 , 4 , 5 and 

6) utilizing a modified 2-step Simpson technique to numerical method of FDEs. We have  

ranking of the best to least (Rung Kutta of order six , Rung Kutta of order five, Rung Kutta of 

order four, Rung Kutta of order three, Rung Kutta of order two and a modified of 2-step 

Simpson) respectively. The researcher attempted to apply some of the problems in physics and 

medicine that the Runge-Kutta mothed was used to solve. 
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