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Abstract. This work introduces a novel hybrid conjugate gradient (CG) technique for tackling unconstrained
optimisation problems with improved efficiency and effectiveness. The parameter 0, is computed as a convex
combination of the standard conjugate gradient techniques using Br° and BE®. Our proposed method has shown
that when using the strong Wolfe-line-search(SWC) under specific conditions, it achieves global theoretical
convergence. In addition, the new hybrid CG approach has the ability to generate a search direction that moves
downward with each iteration. The quantitative findings obtained by applying the recommended technique about
30 functions with varying dimensions clearly illustrate its effectiveness and potential.
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1- INTRODUCTION
Assuming we have a general function f:R™ — R that is continuously
differentiable. Also, examine the subsequent un-constrained optimisation issue
min (or max) {f(x)} € R" (D

The space R™ represent an “n-dimensional Euclidean space”.

To solve Equation (1), we begin by selecting an initial guess x, € R™. We then
employ a non-linear conjugate gradient approach to produce a series {x;}

Xk+1 — Xg + (04% dk ,k = 0, 1, 2, (2)

The value of a;, > 0 is determined by a process called “line search”. The direction denoted
d; are formed using a specific design as

_ — 9k, k=0
d(x) = {—gk +Bed, k>0 )

Let g, be the gradient of f(x;), and B_k be a scalar parameter that defines the properties of
conjugate gradient techniques.

In the field of computing, the step-size a; is considered to meet any of the line search
conditions during the procedure. This work focuses on the robust Wolfe line search Equation
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f(xk +akdk)Sf(X)+6akg£dk, 0 <6<
2 @

2

ldk gCx + ar didl < —0 gl dy, 0<s§<1

The search direction, denoted as d, is explicitly defined in Equation (3).

Researchers have devoted significant attention to CG approaches for a long time. The
result of such investigations is the development of numerous formulas with variations in the
CG coefficient (S} ) for addressing unconstrained optimisation issues[2].

Here are several typical formulas for S:

ER IF 1 Gkt FR(Fletcher — Reeves) [3]
“ T gtae
PR g,7;+1 Vi PR (Polak — Ribiere) [4]
“ T gk’
by 9k Ik DY (Dai - Yuan) [5]
“ di—1Yk-1
cD — 9k 9k CD (conjugate descent) [6]
“ di—19k-1 .
LS _ ~ Gk Vi1 LS (Liu — Storey) [7]
“ di—19k-1
HS _ Ik V-1 HS(Hestenes- Stiefel) [8]
“ d—1YVk-1
Were
Yik-1= 9k — k-1 (5)

Despite their excellent global theroritic convergence, the computational performance
of the CG approaches S5 and BEP is lower. however, superior computing performance is
generally achieved by the BER, BE5 and B}°, despite the fact that they haven’t demonstrated
convergence[9]. “In most cases, hybrid conjugate gradient methods are more efficient than
basic conjugate gradient methods. The hybrid conjugates gradient techniques discussed in this
study are of particular importance. These algorithms are a mixture of a number of different
conjugate gradient techniques.”[10]

The main principle behind their strategy is to capitalize on projected outcomes. They
are frequently promoted as a means to prevent congestion. We have presented a novel hybrid
CG approach that relies on the Ha and LS methods. The method incorporates the parameters
Bl and BES.

1s _ k1 Yk Ha _ g+ I?
T —dlge T " (e fi/ak —3/2)dLg,

To solve the unconstrained optimization problems with %

[11].
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The parameter S% in our proposed method is computed as a convex combination of S5 and
B such that

= (1= 6B + 0, B¢ (6)
Wehave 0 < 6, < 1

The rest of the document is structured in the following manner. In section 2, we outline our
suggested approach for acquiring the parameter 8, using several methodologies. We further
analyse the adequate descent property of our approach under certain suitable conditions, and
moreover establish the parameter constraint in the form of 0 < 6;, < 1. Section 3 encompasses
several assumptions, whereas section 4 defines the global convergence of the proposed
approach. Section 5 concludes by presenting the results of numerical experiments that were
conducted.

2. GRADIENT METHOD CONJUGATES WITH THE NEW HYBRID

2.1 The New 0, Parameter Derivation

The recurrence is utilized to determine the iterates x o, X 1, X 2, ... ... of our method (2.2). The
strong Wolfe requirements (4) determine the step size a, > 0, whereas the rule generates the
directions.
do = =90 }
(7)
{dk+1 = —0k+1 + Bidy

and the parameter B§ in the form Eq(6), where 0 < 6, < 1 and we derived hybrid
parameter by, derivation of the new parameter

B{" = (1 - 6,)BLS + 6, Bf°

T 2
Irk+1YVk +6, | g+l

—di gk (firr = fi)/ e — 3/2 di g

Derivation of the new hybrid parameter from the above equation
—9, if k=0

~g,+ B, diy  if k>0

Byt = (1—6;)

dp ={

since 0 <6, <1

2
T
Iie+1Yk ||gk+1||
diyr = —Gks1 + (1= 6) —7— dj + 6,
—di 9, (fk+1 - fk)/“k +3/2dyg,
Wolf's situation makes that imperative
. 1
ferr < fre + 6 ap g, dy OS(SSE

Multiply both sides of the equation y;
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gk 1Yk |G+ 1I?
Videsr = —Vi g1 + (1 — 6;) +kgk Vi di + 0y 5 ay g,l"dk 3 P Vi dy
ay 7%k
It's essential the y!d,,, = 0 by perry, then
0= - . +(1 6)gk+1yk Vi d +0 ||gk+1||2 Jd
= — 0 k k
kI k+1 dkgk k 6lgkdk k™)
2
T T
i1 Vi i1 Vi ||gk+1|| T

0= —)’Tg - Y, A + 0y yT k= Ok ————

L dyg, F dig, " Sigyd Tk

T +91€+1 Yk T d. =0 [91€+1 Ye 1 d ||gk+1|| Td.]
Yk Gk+1 —d?;gk Vi Ok k dggk Vi Ok — 51g dy Vi Qg
Vi Grs1 + gg;;yk Vi dy
oo ek = T >
Ik+1 Yk T dy — | graall yTd,
dkgk k 5191€dk k
ykTgk+1 9k+1yk
9., = Vi 9k dkgk 8
T gk, ool ®)

]
Aok (Sakgdr/ak-3/2dkg))

In order to Prove that 0 < 8, < 1 we will use the following mathematical lemma.

Lemma: The hybridization parameter in the convex structure is limited to 0 and 1. And so is
our hybridization scalar Eq(8).

Proof

1-The first possibility:- we take the case of a fraction that is less than zero. we get a
contradiction because a positive value + a positive value is impossible for a negative result to
appear.

Numerator + denominator

Numerator + the vule
Yk gk+1 + gk+1 Yk

Yk dk dk gr 9
peaE

[g£+1 Yk + | gr+1ll? ]
dygx  (Baxgidi/ax — 3/2dygr)

The product of two sides multiplied by two means.
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Vi Ok+1 . Gir1 Vi
J’i{ dy d£ Ik

A contradiction because a positive value + a positive value

2-The second possibility: we take, the fraction greater than zero and obtain that the
denominator is greater than zero

Yk Gk+1 + g£+1 Yk
J’i{ dy dﬁ )
g£+1 Yk | Grea1ll?
digx  (Baxgrdi/ax — 3/2dygy)

0<

3-The third possibility:- we take the fraction less than one and obtain that the
denominator is the greater than the numerator

Vi Gice1 | Gier1 Ve
3’1? dy d?é )
[QI€+1 Yk n | Gses1ll? 1
digx  (Bargrdi/ax — 3/2dygyf)

<1

theﬂf@ + denominator <
Numerator + the /vlrae

the vlue + denominator < the vlue + Numerator

denominator < Numerator

T )l/ T 2
Yk 9k+1 | Gk+1 < Ir+1 Vk ¢l | g+l

+
yide  d¥gx  dLgn | Baxgidi/oax — 3/2digh)

Yk Gk+1 I gisll?
Vi dk (Sargidi/ax — 3/2 drgi)
4- The fourth possibility:- we take the fraction greater than one and obtain a contradiction

due to the presence of the squared swelling. By simplifying , this result appears (a
contradiction)

Vi Gies1 . Gk Vi

y;f dy dl Ik
[g£+1 Yk n | gse+1 11 ]
digr  (Barghdi/ax — 3/2dgy)

1<
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(contradiction) Due to the presence of || gx+1 /% square swelling , by simplifying we will
obtain a (contradiction)

3. The Descending Characterized

Assume that the function fulfills the hypotheses, H and when «, it satisfies the strong wolf
line, then Bf it satisfies the formula, then the following is holding.

Jir1drs1 <0, YV k
Proof: using the principle of mathematical induction

T
Ik+1 Yk 7

dics1 Ik+1 = —Fk+1 Grrr + (1 = Hk)Tdk Jr+1
k Yk

lgx + 1112 r
(Sar I dicjar—zs2) b gi © 7!

+ 6

Yk = 9k+1 — Gk
”gk+1”2 = gl€+1gk+1 B

gl€+1(gk+1 — gr) gI€+1(gk+1 = gr) ”gk+1”2

= llgi + 111> = T g di g ks1 + Ok a7 gr dic Grs1 + Ok G —3/2)9 4 di Gr+1
“0<6,<1
g + 1012 — (g gk+;)£;k(g£+1 9x) 0T Gns + 6 (gksa gk+;)£;k(g£+1 9x) 0 g
+ Ok %‘ﬁ Gr+1
= llg + 1117 = g + 1||2d291f(||9k +1012 o d¥ g + 6, llgi + 1||2d—£;€(||gk +1012 o dl e + ek%
— o di gk

Use the (SWC) search  odl g, < dfgrs1 < —odl g
IF 19k < —Vllgrs1ll> (AL-Bayat i& Jameel-2014)

llgi + 1112
= llgx + 112 = llge + 1I* = Pllgi + 1I* = 0 + Okllgi + 1NI* — Yligi + 111* — 0 + Oy (5"_ 3/2)

— 0

Oy
dk+19k+1S—[1—1—¢—09k—0+m—0]||gk+1||2
vy = [1 1 O — 0+ —2 ] 0<c¢ <1
L Cp = Y—00,—o0 G =3/2) o C1

Air19k+1 < —C1 Gk+19k+1
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4. Global Convergence

f A uniformly convex function
Jim infllgill =0
0<o6<1-

it is obtained from the strong wolff line ||5, || approaching zero, as there is an on-negative
number x;, > 0 so that

Igicll? = nyllS,]I1?
I gr+1l1? = ny [ I

Since djthe convergence vector and obtain ak > 0 is the step length, we through the
strong wolff line if

1
kz M2 =7
+ lim inf [|gill = 0
Proof:

Bi'® = (1 - 6;)Bg® + 6, Bi*

BMR = (1—¢ )gI€+1 Vi do + 6 I gresall® d
* “ —d}, gk T e — fid ake = 3/2 )dy; gk e
T 2
Ir+1 Yk g+l
BMR =227 "~ d,. +6 d
T —dl g T (furn — f/ak —3/2)dl g ©
2 2
e = 0l g
—dy gk Oak di gk

S Myrll = llgr+1 — grll < LISkl

grdi < —cllgll®

1215, |2 2

BYF < Il k”2 |ng+;||
cllgell Sak di; gk
2 2 2

B,’(”RSL ISkl g+ ll

cllgell® ~ Sak cllgell?
LSl | nallSill

By'® <
cny ISkl nal1Skll?
2
BJR 1

“cng o ny||Skll
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Aiy1 = —Grs1 — Bildek
ldis1ll = I=Gr+1 + B diell < llgisall + [BEE] Nl

i1l = Ngusall? + 2B RN grralllldell + (B2 lld,|I?

L2|ISgl ny yz”Sk”yz ISkl [L2||Sk|| ny 1o ISkl

< ISl + 2 [kl
1ok cngllSgll — nzlISkll [Bakl ~ “cnallSkll — nzliSkll”  18qkl

But

ISicll = Il = xicll

D = Max {”xk+1 - xk”,VX,Xk € S}

L’D n, w2 Dy2 L’D n,
SmpD 42| —+—=Imy? —+—
ny 2 ak| mny

2

1
.|6ak|2

dgsall? < 9

1 1 1
D P2 25 g = ®

+ lim inf llg;ll = 0.

5-Numerical Tests

The following part will analyse the results of our numerical experiments that employed the
hybrid MR method. In addition, we will compare these results with the numerical outputs of
two other algorithms (Hanen, LS) that utilise the Wolfe line search method. The comparison
will be conducted using the metrics of iteration count (Nol) and function evaluation count
(NoF). The iterations will stop when the magnitude of the gradient norm is less than or equal
to 1075

Furthermore, we utilized 30 unconstrained optimization problem functions with a variable
count of either 100 or 1000. All the graphs in this work were generated using Fortran software.
The discussion the results by Dolan and More miner to compare based on MATLAB program.

Table 1: The details of testing results using 30 functions with different dimension.

Function Dim Hanen LS MR
Ni NF Ni NF Ni NF

100 37 111 32 73 26 45

Extended Trigonometric 1000 79 228 90 661 41 70

100 1001 1727 1001 1888 50 96

Extended Rosenbrock

SROSENBR 1000 1001 1629 1001 2093 82 334
Extended White & Holst 100 1001 2090 1001 1712 68 195
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1000 | 1001 1777 1001 | 1586 56 121
Extended Beale BEALE 100 20 40 35 352 15 30
(CUTE)
1000 | 323 9893 160 4269 65 1462
100 | 268 1289 229 1134 | 154 374
Extended Penalty 1000 | 1001 4322 1001 | 3975 | 577 | 1605
100 | 258 987 206 581 136 254
Perturbed Quadratic 1000 | 1001 2136 713 | 2006 | 579 | 1138
100 4 9 4 9 4 9
Raydan 1 1000 | 4 9 4 9 4 9
100 47 234 63 875 16 27
Generalized Tridiagonal 1 =656—03 2582 135 3530 45 794
100 | 105 477 85 386 50 133
Extended Tridiagonal 1 1000 | 199 1575 29 | 957 | % 174
100 4 9 4 9 4 9
Extended Three Expo Terms 1000 2 9 2 9 4 9
100 24 63 36 235 17 30
Generalized Tridiagonal 2 1000 8 159 47 193 9 3
100 31 532 29 427 17 33
Diagonal 5 1000 | 28 504 764 36 18 99
100 56 91 57 93 16 30
Generalized PSC1 1000 | 65 105 65 105 65 105
100 | 1001 1481 1001 | 1615 72 161
Extended PSCI 1000 | 1001 1351 1001 | 1313 | 125 309
100 | 178 5279 64 1514 15 34
Extended Block-Diagonal
BDI 1000 | 1001 33319 18 48 752 24585
100 | 268 621 212 515 148 270

Extended Maratos
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1000 | 1001 1583 100 2158 626 1183
100 2 5 2 5 2 5
Extended Cliff CLIFF
(CUTE) 1000 2 5 2 5 2 5
100 151 1472 187 2489 58 104
Quadratic Diagonal Perturbed 1000 170 2394 113 1596 43 33
100 121 613 99 419 22 108
Quadratic QF1 1000 | 514 1699 a3 1978 9 56
100 | 1001 2487 1001 1935 19 38
Extended Quadratic Penalty
QPI1 1000 | 1001 1273 1001 1621 31 31
100 7 14 7 14 7 14
Extended EP1 1000 13 26 14 38 11 22
100 10 18 10 18 10 18
Extended Tridiagonal 2 1000 T 9 1 19 1 19
100 13 24 13 24 13 24
BDQRTIC (CUTE) 1000 14 25 14 25 14 25
100 531 1658 594 1664 190 322
TRIDIA (CUTE)
1000 | 1001 2497 1001 2497 | 1001 | 1048
100 67 323 75 282 34 55
ARWHEAD (CUTE) 1000 | 89 357 90 351 16 85
100 56 136 70 745 39 76
NONDQUAR (CUTE) 1000 | 125 2585 66 513 44 378
100 11 29 11 29 11 29
DQDRTIC (CUTE) 1000 16 43 16 43 16 43
100 478 1671 216 638 21 40
DIXMAANA (CUTE) 1000 | 1001 1649 1001 1680 25 55
100 4 9 4 9 4 9
DIXMAANB (CUTE) 1000 4 9 4 9 4 9
DIXMAANE (CUTE) 100 63 308 102 452 27 52
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1000 | 73 301 71 320 24 50
100 19 43 19 86 16 29
Partial Perturbed Quadratic 1000 22 89 18 79 17 30
» 100 14 24 78 318 27 50
Tndiagonal Perturbed 1000 | 53 233 101 587 34 66
Quadratic

100 | 31 532 29 427 17 33
LIARWHD (CUTE) 1000 | 28 504 35 764 39 76
100 | 56 136 70 745 44 378

NONDQUAR (CUTE)
1000 | 125 2585 66 513 1 29

Total 16.809 | 12.988.506 | 16.820 | 306.020 | 5.833 | 36.873

We conclude the practical aspect by reviewing the graphics related to the policy of comparisons
by researchers Dolan and More. The first drawing showed the differences between the new
algorithm and the classic algorithms regarding the number of iterations. The second drawing
was for standard function calculations.
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Figure 1: Nol comparsion.

We have observed that our strategy has transitioned to an ascending trajectory in contrast to

the previous method.
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Figure 1: NoF comparison.
6-Conclusion

In this study, a novel strategy called Sf was created for unconstrained optimisation. It
combines the algorithms S5° and BF%"¢™ to create a hybrid conjugate gradient method. The
suggested method has undergone thorough theoretical and practical analysis. The algorithm's
features of adequate descent and global convergence have been confirmed by applying certain
hypotheses.
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